| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elni2 | Unicode version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| elni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7376 |
. . 3
| |
| 2 | 0npi 7380 |
. . . . . 6
| |
| 3 | eleq1 2259 |
. . . . . 6
| |
| 4 | 2, 3 | mtbiri 676 |
. . . . 5
|
| 5 | 4 | con2i 628 |
. . . 4
|
| 6 | 0elnn 4655 |
. . . . . 6
| |
| 7 | 1, 6 | syl 14 |
. . . . 5
|
| 8 | 7 | ord 725 |
. . . 4
|
| 9 | 5, 8 | mpd 13 |
. . 3
|
| 10 | 1, 9 | jca 306 |
. 2
|
| 11 | nndceq0 4654 |
. . . . . 6
| |
| 12 | df-dc 836 |
. . . . . 6
| |
| 13 | 11, 12 | sylib 122 |
. . . . 5
|
| 14 | 13 | anim1i 340 |
. . . 4
|
| 15 | ancom 266 |
. . . . 5
| |
| 16 | andi 819 |
. . . . 5
| |
| 17 | 15, 16 | bitr3i 186 |
. . . 4
|
| 18 | 14, 17 | sylib 122 |
. . 3
|
| 19 | noel 3454 |
. . . . . . . . 9
| |
| 20 | eleq2 2260 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mtbiri 676 |
. . . . . . . 8
|
| 22 | 21 | pm2.21d 620 |
. . . . . . 7
|
| 23 | 22 | impcom 125 |
. . . . . 6
|
| 24 | 23 | a1i 9 |
. . . . 5
|
| 25 | df-ne 2368 |
. . . . . . 7
| |
| 26 | elni 7375 |
. . . . . . . 8
| |
| 27 | 26 | simplbi2 385 |
. . . . . . 7
|
| 28 | 25, 27 | biimtrrid 153 |
. . . . . 6
|
| 29 | 28 | adantld 278 |
. . . . 5
|
| 30 | 24, 29 | jaod 718 |
. . . 4
|
| 31 | 30 | adantr 276 |
. . 3
|
| 32 | 18, 31 | mpd 13 |
. 2
|
| 33 | 10, 32 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-ni 7371 |
| This theorem is referenced by: addclpi 7394 mulclpi 7395 mulcanpig 7402 addnidpig 7403 ltexpi 7404 ltmpig 7406 nnppipi 7410 archnqq 7484 enq0tr 7501 |
| Copyright terms: Public domain | W3C validator |