Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elni2 | Unicode version |
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
elni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7283 | . . 3 | |
2 | 0npi 7287 | . . . . . 6 | |
3 | eleq1 2238 | . . . . . 6 | |
4 | 2, 3 | mtbiri 675 | . . . . 5 |
5 | 4 | con2i 627 | . . . 4 |
6 | 0elnn 4612 | . . . . . 6 | |
7 | 1, 6 | syl 14 | . . . . 5 |
8 | 7 | ord 724 | . . . 4 |
9 | 5, 8 | mpd 13 | . . 3 |
10 | 1, 9 | jca 306 | . 2 |
11 | nndceq0 4611 | . . . . . 6 DECID | |
12 | df-dc 835 | . . . . . 6 DECID | |
13 | 11, 12 | sylib 122 | . . . . 5 |
14 | 13 | anim1i 340 | . . . 4 |
15 | ancom 266 | . . . . 5 | |
16 | andi 818 | . . . . 5 | |
17 | 15, 16 | bitr3i 186 | . . . 4 |
18 | 14, 17 | sylib 122 | . . 3 |
19 | noel 3424 | . . . . . . . . 9 | |
20 | eleq2 2239 | . . . . . . . . 9 | |
21 | 19, 20 | mtbiri 675 | . . . . . . . 8 |
22 | 21 | pm2.21d 619 | . . . . . . 7 |
23 | 22 | impcom 125 | . . . . . 6 |
24 | 23 | a1i 9 | . . . . 5 |
25 | df-ne 2346 | . . . . . . 7 | |
26 | elni 7282 | . . . . . . . 8 | |
27 | 26 | simplbi2 385 | . . . . . . 7 |
28 | 25, 27 | syl5bir 153 | . . . . . 6 |
29 | 28 | adantld 278 | . . . . 5 |
30 | 24, 29 | jaod 717 | . . . 4 |
31 | 30 | adantr 276 | . . 3 |
32 | 18, 31 | mpd 13 | . 2 |
33 | 10, 32 | impbii 126 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 DECID wdc 834 wceq 1353 wcel 2146 wne 2345 c0 3420 com 4583 cnpi 7246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-ni 7278 |
This theorem is referenced by: addclpi 7301 mulclpi 7302 mulcanpig 7309 addnidpig 7310 ltexpi 7311 ltmpig 7313 nnppipi 7317 archnqq 7391 enq0tr 7408 |
Copyright terms: Public domain | W3C validator |