Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elni2 | Unicode version |
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
elni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7250 | . . 3 | |
2 | 0npi 7254 | . . . . . 6 | |
3 | eleq1 2229 | . . . . . 6 | |
4 | 2, 3 | mtbiri 665 | . . . . 5 |
5 | 4 | con2i 617 | . . . 4 |
6 | 0elnn 4596 | . . . . . 6 | |
7 | 1, 6 | syl 14 | . . . . 5 |
8 | 7 | ord 714 | . . . 4 |
9 | 5, 8 | mpd 13 | . . 3 |
10 | 1, 9 | jca 304 | . 2 |
11 | nndceq0 4595 | . . . . . 6 DECID | |
12 | df-dc 825 | . . . . . 6 DECID | |
13 | 11, 12 | sylib 121 | . . . . 5 |
14 | 13 | anim1i 338 | . . . 4 |
15 | ancom 264 | . . . . 5 | |
16 | andi 808 | . . . . 5 | |
17 | 15, 16 | bitr3i 185 | . . . 4 |
18 | 14, 17 | sylib 121 | . . 3 |
19 | noel 3413 | . . . . . . . . 9 | |
20 | eleq2 2230 | . . . . . . . . 9 | |
21 | 19, 20 | mtbiri 665 | . . . . . . . 8 |
22 | 21 | pm2.21d 609 | . . . . . . 7 |
23 | 22 | impcom 124 | . . . . . 6 |
24 | 23 | a1i 9 | . . . . 5 |
25 | df-ne 2337 | . . . . . . 7 | |
26 | elni 7249 | . . . . . . . 8 | |
27 | 26 | simplbi2 383 | . . . . . . 7 |
28 | 25, 27 | syl5bir 152 | . . . . . 6 |
29 | 28 | adantld 276 | . . . . 5 |
30 | 24, 29 | jaod 707 | . . . 4 |
31 | 30 | adantr 274 | . . 3 |
32 | 18, 31 | mpd 13 | . 2 |
33 | 10, 32 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 c0 3409 com 4567 cnpi 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-ni 7245 |
This theorem is referenced by: addclpi 7268 mulclpi 7269 mulcanpig 7276 addnidpig 7277 ltexpi 7278 ltmpig 7280 nnppipi 7284 archnqq 7358 enq0tr 7375 |
Copyright terms: Public domain | W3C validator |