Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elni2 | Unicode version |
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
elni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7271 | . . 3 | |
2 | 0npi 7275 | . . . . . 6 | |
3 | eleq1 2233 | . . . . . 6 | |
4 | 2, 3 | mtbiri 670 | . . . . 5 |
5 | 4 | con2i 622 | . . . 4 |
6 | 0elnn 4603 | . . . . . 6 | |
7 | 1, 6 | syl 14 | . . . . 5 |
8 | 7 | ord 719 | . . . 4 |
9 | 5, 8 | mpd 13 | . . 3 |
10 | 1, 9 | jca 304 | . 2 |
11 | nndceq0 4602 | . . . . . 6 DECID | |
12 | df-dc 830 | . . . . . 6 DECID | |
13 | 11, 12 | sylib 121 | . . . . 5 |
14 | 13 | anim1i 338 | . . . 4 |
15 | ancom 264 | . . . . 5 | |
16 | andi 813 | . . . . 5 | |
17 | 15, 16 | bitr3i 185 | . . . 4 |
18 | 14, 17 | sylib 121 | . . 3 |
19 | noel 3418 | . . . . . . . . 9 | |
20 | eleq2 2234 | . . . . . . . . 9 | |
21 | 19, 20 | mtbiri 670 | . . . . . . . 8 |
22 | 21 | pm2.21d 614 | . . . . . . 7 |
23 | 22 | impcom 124 | . . . . . 6 |
24 | 23 | a1i 9 | . . . . 5 |
25 | df-ne 2341 | . . . . . . 7 | |
26 | elni 7270 | . . . . . . . 8 | |
27 | 26 | simplbi2 383 | . . . . . . 7 |
28 | 25, 27 | syl5bir 152 | . . . . . 6 |
29 | 28 | adantld 276 | . . . . 5 |
30 | 24, 29 | jaod 712 | . . . 4 |
31 | 30 | adantr 274 | . . 3 |
32 | 18, 31 | mpd 13 | . 2 |
33 | 10, 32 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 c0 3414 com 4574 cnpi 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-ni 7266 |
This theorem is referenced by: addclpi 7289 mulclpi 7290 mulcanpig 7297 addnidpig 7298 ltexpi 7299 ltmpig 7301 nnppipi 7305 archnqq 7379 enq0tr 7396 |
Copyright terms: Public domain | W3C validator |