ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni2 Unicode version

Theorem elni2 7398
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
Assertion
Ref Expression
elni2  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )

Proof of Theorem elni2
StepHypRef Expression
1 pinn 7393 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 0npi 7397 . . . . . 6  |-  -.  (/)  e.  N.
3 eleq1 2259 . . . . . 6  |-  ( A  =  (/)  ->  ( A  e.  N.  <->  (/)  e.  N. ) )
42, 3mtbiri 676 . . . . 5  |-  ( A  =  (/)  ->  -.  A  e.  N. )
54con2i 628 . . . 4  |-  ( A  e.  N.  ->  -.  A  =  (/) )
6 0elnn 4656 . . . . . 6  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
71, 6syl 14 . . . . 5  |-  ( A  e.  N.  ->  ( A  =  (/)  \/  (/)  e.  A
) )
87ord 725 . . . 4  |-  ( A  e.  N.  ->  ( -.  A  =  (/)  ->  (/)  e.  A
) )
95, 8mpd 13 . . 3  |-  ( A  e.  N.  ->  (/)  e.  A
)
101, 9jca 306 . 2  |-  ( A  e.  N.  ->  ( A  e.  om  /\  (/)  e.  A
) )
11 nndceq0 4655 . . . . . 6  |-  ( A  e.  om  -> DECID  A  =  (/) )
12 df-dc 836 . . . . . 6  |-  (DECID  A  =  (/) 
<->  ( A  =  (/)  \/ 
-.  A  =  (/) ) )
1311, 12sylib 122 . . . . 5  |-  ( A  e.  om  ->  ( A  =  (/)  \/  -.  A  =  (/) ) )
1413anim1i 340 . . . 4  |-  ( ( A  e.  om  /\  (/) 
e.  A )  -> 
( ( A  =  (/)  \/  -.  A  =  (/) )  /\  (/)  e.  A
) )
15 ancom 266 . . . . 5  |-  ( (
(/)  e.  A  /\  ( A  =  (/)  \/  -.  A  =  (/) ) )  <-> 
( ( A  =  (/)  \/  -.  A  =  (/) )  /\  (/)  e.  A
) )
16 andi 819 . . . . 5  |-  ( (
(/)  e.  A  /\  ( A  =  (/)  \/  -.  A  =  (/) ) )  <-> 
( ( (/)  e.  A  /\  A  =  (/) )  \/  ( (/)  e.  A  /\  -.  A  =  (/) ) ) )
1715, 16bitr3i 186 . . . 4  |-  ( ( ( A  =  (/)  \/ 
-.  A  =  (/) )  /\  (/)  e.  A )  <-> 
( ( (/)  e.  A  /\  A  =  (/) )  \/  ( (/)  e.  A  /\  -.  A  =  (/) ) ) )
1814, 17sylib 122 . . 3  |-  ( ( A  e.  om  /\  (/) 
e.  A )  -> 
( ( (/)  e.  A  /\  A  =  (/) )  \/  ( (/)  e.  A  /\  -.  A  =  (/) ) ) )
19 noel 3455 . . . . . . . . 9  |-  -.  (/)  e.  (/)
20 eleq2 2260 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( (/)  e.  A  <->  (/)  e.  (/) ) )
2119, 20mtbiri 676 . . . . . . . 8  |-  ( A  =  (/)  ->  -.  (/)  e.  A
)
2221pm2.21d 620 . . . . . . 7  |-  ( A  =  (/)  ->  ( (/)  e.  A  ->  A  e. 
N. ) )
2322impcom 125 . . . . . 6  |-  ( (
(/)  e.  A  /\  A  =  (/) )  ->  A  e.  N. )
2423a1i 9 . . . . 5  |-  ( A  e.  om  ->  (
( (/)  e.  A  /\  A  =  (/) )  ->  A  e.  N. )
)
25 df-ne 2368 . . . . . . 7  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
26 elni 7392 . . . . . . . 8  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
2726simplbi2 385 . . . . . . 7  |-  ( A  e.  om  ->  ( A  =/=  (/)  ->  A  e.  N. ) )
2825, 27biimtrrid 153 . . . . . 6  |-  ( A  e.  om  ->  ( -.  A  =  (/)  ->  A  e.  N. ) )
2928adantld 278 . . . . 5  |-  ( A  e.  om  ->  (
( (/)  e.  A  /\  -.  A  =  (/) )  ->  A  e.  N. )
)
3024, 29jaod 718 . . . 4  |-  ( A  e.  om  ->  (
( ( (/)  e.  A  /\  A  =  (/) )  \/  ( (/)  e.  A  /\  -.  A  =  (/) ) )  ->  A  e.  N. ) )
3130adantr 276 . . 3  |-  ( ( A  e.  om  /\  (/) 
e.  A )  -> 
( ( ( (/)  e.  A  /\  A  =  (/) )  \/  ( (/) 
e.  A  /\  -.  A  =  (/) ) )  ->  A  e.  N. ) )
3218, 31mpd 13 . 2  |-  ( ( A  e.  om  /\  (/) 
e.  A )  ->  A  e.  N. )
3310, 32impbii 126 1  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   (/)c0 3451   omcom 4627   N.cnpi 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-suc 4407  df-iom 4628  df-ni 7388
This theorem is referenced by:  addclpi  7411  mulclpi  7412  mulcanpig  7419  addnidpig  7420  ltexpi  7421  ltmpig  7423  nnppipi  7427  archnqq  7501  enq0tr  7518
  Copyright terms: Public domain W3C validator