| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elni2 | Unicode version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| elni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7422 |
. . 3
| |
| 2 | 0npi 7426 |
. . . . . 6
| |
| 3 | eleq1 2268 |
. . . . . 6
| |
| 4 | 2, 3 | mtbiri 677 |
. . . . 5
|
| 5 | 4 | con2i 628 |
. . . 4
|
| 6 | 0elnn 4667 |
. . . . . 6
| |
| 7 | 1, 6 | syl 14 |
. . . . 5
|
| 8 | 7 | ord 726 |
. . . 4
|
| 9 | 5, 8 | mpd 13 |
. . 3
|
| 10 | 1, 9 | jca 306 |
. 2
|
| 11 | nndceq0 4666 |
. . . . . 6
| |
| 12 | df-dc 837 |
. . . . . 6
| |
| 13 | 11, 12 | sylib 122 |
. . . . 5
|
| 14 | 13 | anim1i 340 |
. . . 4
|
| 15 | ancom 266 |
. . . . 5
| |
| 16 | andi 820 |
. . . . 5
| |
| 17 | 15, 16 | bitr3i 186 |
. . . 4
|
| 18 | 14, 17 | sylib 122 |
. . 3
|
| 19 | noel 3464 |
. . . . . . . . 9
| |
| 20 | eleq2 2269 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mtbiri 677 |
. . . . . . . 8
|
| 22 | 21 | pm2.21d 620 |
. . . . . . 7
|
| 23 | 22 | impcom 125 |
. . . . . 6
|
| 24 | 23 | a1i 9 |
. . . . 5
|
| 25 | df-ne 2377 |
. . . . . . 7
| |
| 26 | elni 7421 |
. . . . . . . 8
| |
| 27 | 26 | simplbi2 385 |
. . . . . . 7
|
| 28 | 25, 27 | biimtrrid 153 |
. . . . . 6
|
| 29 | 28 | adantld 278 |
. . . . 5
|
| 30 | 24, 29 | jaod 719 |
. . . 4
|
| 31 | 30 | adantr 276 |
. . 3
|
| 32 | 18, 31 | mpd 13 |
. 2
|
| 33 | 10, 32 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-ni 7417 |
| This theorem is referenced by: addclpi 7440 mulclpi 7441 mulcanpig 7448 addnidpig 7449 ltexpi 7450 ltmpig 7452 nnppipi 7456 archnqq 7530 enq0tr 7547 |
| Copyright terms: Public domain | W3C validator |