ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni Unicode version

Theorem elni 7249
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )

Proof of Theorem elni
StepHypRef Expression
1 df-ni 7245 . . 3  |-  N.  =  ( om  \  { (/) } )
21eleq2i 2233 . 2  |-  ( A  e.  N.  <->  A  e.  ( om  \  { (/) } ) )
3 eldifsn 3703 . 2  |-  ( A  e.  ( om  \  { (/)
} )  <->  ( A  e.  om  /\  A  =/=  (/) ) )
42, 3bitri 183 1  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136    =/= wne 2336    \ cdif 3113   (/)c0 3409   {csn 3576   omcom 4567   N.cnpi 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-sn 3582  df-ni 7245
This theorem is referenced by:  0npi  7254  elni2  7255  1pi  7256  addclpi  7268  mulclpi  7269  nlt1pig  7282  indpi  7283  nqnq0pi  7379  prarloclemcalc  7443
  Copyright terms: Public domain W3C validator