ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni Unicode version

Theorem elni 7368
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )

Proof of Theorem elni
StepHypRef Expression
1 df-ni 7364 . . 3  |-  N.  =  ( om  \  { (/) } )
21eleq2i 2260 . 2  |-  ( A  e.  N.  <->  A  e.  ( om  \  { (/) } ) )
3 eldifsn 3745 . 2  |-  ( A  e.  ( om  \  { (/)
} )  <->  ( A  e.  om  /\  A  =/=  (/) ) )
42, 3bitri 184 1  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164    =/= wne 2364    \ cdif 3150   (/)c0 3446   {csn 3618   omcom 4622   N.cnpi 7332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-sn 3624  df-ni 7364
This theorem is referenced by:  0npi  7373  elni2  7374  1pi  7375  addclpi  7387  mulclpi  7388  nlt1pig  7401  indpi  7402  nqnq0pi  7498  prarloclemcalc  7562
  Copyright terms: Public domain W3C validator