ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni Unicode version

Theorem elni 7421
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )

Proof of Theorem elni
StepHypRef Expression
1 df-ni 7417 . . 3  |-  N.  =  ( om  \  { (/) } )
21eleq2i 2272 . 2  |-  ( A  e.  N.  <->  A  e.  ( om  \  { (/) } ) )
3 eldifsn 3760 . 2  |-  ( A  e.  ( om  \  { (/)
} )  <->  ( A  e.  om  /\  A  =/=  (/) ) )
42, 3bitri 184 1  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176    =/= wne 2376    \ cdif 3163   (/)c0 3460   {csn 3633   omcom 4638   N.cnpi 7385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-sn 3639  df-ni 7417
This theorem is referenced by:  0npi  7426  elni2  7427  1pi  7428  addclpi  7440  mulclpi  7441  nlt1pig  7454  indpi  7455  nqnq0pi  7551  prarloclemcalc  7615
  Copyright terms: Public domain W3C validator