ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi GIF version

Theorem 0npi 7373
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi ¬ ∅ ∈ N

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2193 . 2 ∅ = ∅
2 elni 7368 . . . 4 (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅))
32simprbi 275 . . 3 (∅ ∈ N → ∅ ≠ ∅)
43necon2bi 2419 . 2 (∅ = ∅ → ¬ ∅ ∈ N)
51, 4ax-mp 5 1 ¬ ∅ ∈ N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  wcel 2164  wne 2364  c0 3446  ωcom 4622  Ncnpi 7332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-sn 3624  df-ni 7364
This theorem is referenced by:  elni2  7374
  Copyright terms: Public domain W3C validator