ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi GIF version

Theorem 0npi 7314
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi ¬ ∅ ∈ N

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2177 . 2 ∅ = ∅
2 elni 7309 . . . 4 (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅))
32simprbi 275 . . 3 (∅ ∈ N → ∅ ≠ ∅)
43necon2bi 2402 . 2 (∅ = ∅ → ¬ ∅ ∈ N)
51, 4ax-mp 5 1 ¬ ∅ ∈ N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1353  wcel 2148  wne 2347  c0 3424  ωcom 4591  Ncnpi 7273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-sn 3600  df-ni 7305
This theorem is referenced by:  elni2  7315
  Copyright terms: Public domain W3C validator