| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0npi | GIF version | ||
| Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| 0npi | ⊢ ¬ ∅ ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 | . 2 ⊢ ∅ = ∅ | |
| 2 | elni 7456 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
| 3 | 2 | simprbi 275 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
| 4 | 3 | necon2bi 2433 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∅c0 3468 ωcom 4656 Ncnpi 7420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-sn 3649 df-ni 7452 |
| This theorem is referenced by: elni2 7462 |
| Copyright terms: Public domain | W3C validator |