Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0npi | GIF version |
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
0npi | ⊢ ¬ ∅ ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . 2 ⊢ ∅ = ∅ | |
2 | elni 7211 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
3 | 2 | simprbi 273 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
4 | 3 | necon2bi 2382 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∅c0 3394 ωcom 4547 Ncnpi 7175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-v 2714 df-dif 3104 df-sn 3566 df-ni 7207 |
This theorem is referenced by: elni2 7217 |
Copyright terms: Public domain | W3C validator |