ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi GIF version

Theorem 0npi 7216
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi ¬ ∅ ∈ N

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2157 . 2 ∅ = ∅
2 elni 7211 . . . 4 (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅))
32simprbi 273 . . 3 (∅ ∈ N → ∅ ≠ ∅)
43necon2bi 2382 . 2 (∅ = ∅ → ¬ ∅ ∈ N)
51, 4ax-mp 5 1 ¬ ∅ ∈ N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wcel 2128  wne 2327  c0 3394  ωcom 4547  Ncnpi 7175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-sn 3566  df-ni 7207
This theorem is referenced by:  elni2  7217
  Copyright terms: Public domain W3C validator