| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imadiflem | Unicode version | ||
| Description: One direction of imadif 5339. This direction does not require
|
| Ref | Expression |
|---|---|
| imadiflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 |
. . . 4
| |
| 2 | df-rex 2481 |
. . . . 5
| |
| 3 | 2 | notbii 669 |
. . . 4
|
| 4 | alnex 1513 |
. . . . . . 7
| |
| 5 | 19.29r 1635 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan2br 288 |
. . . . . 6
|
| 7 | simpl 109 |
. . . . . . . . 9
| |
| 8 | simplr 528 |
. . . . . . . . . 10
| |
| 9 | simpr 110 |
. . . . . . . . . . 11
| |
| 10 | ancom 266 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | notbii 669 |
. . . . . . . . . . . 12
|
| 12 | imnan 691 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | bitr4i 187 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | sylib 122 |
. . . . . . . . . 10
|
| 15 | 8, 14 | mpd 13 |
. . . . . . . . 9
|
| 16 | 7, 15, 8 | jca32 310 |
. . . . . . . 8
|
| 17 | eldif 3166 |
. . . . . . . . . 10
| |
| 18 | 17 | anbi1i 458 |
. . . . . . . . 9
|
| 19 | anandir 591 |
. . . . . . . . 9
| |
| 20 | 18, 19 | bitri 184 |
. . . . . . . 8
|
| 21 | 16, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | eximi 1614 |
. . . . . 6
|
| 23 | 6, 22 | syl 14 |
. . . . 5
|
| 24 | df-rex 2481 |
. . . . 5
| |
| 25 | 23, 24 | sylibr 134 |
. . . 4
|
| 26 | 1, 3, 25 | syl2anb 291 |
. . 3
|
| 27 | 26 | ss2abi 3256 |
. 2
|
| 28 | dfima2 5012 |
. . . 4
| |
| 29 | dfima2 5012 |
. . . 4
| |
| 30 | 28, 29 | difeq12i 3280 |
. . 3
|
| 31 | difab 3433 |
. . 3
| |
| 32 | 30, 31 | eqtri 2217 |
. 2
|
| 33 | dfima2 5012 |
. 2
| |
| 34 | 27, 32, 33 | 3sstr4i 3225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: imadif 5339 |
| Copyright terms: Public domain | W3C validator |