Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imadiflem | Unicode version |
Description: One direction of imadif 5268. This direction does not require . (Contributed by Jim Kingdon, 25-Dec-2018.) |
Ref | Expression |
---|---|
imadiflem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . . . 4 | |
2 | df-rex 2450 | . . . . 5 | |
3 | 2 | notbii 658 | . . . 4 |
4 | alnex 1487 | . . . . . . 7 | |
5 | 19.29r 1609 | . . . . . . 7 | |
6 | 4, 5 | sylan2br 286 | . . . . . 6 |
7 | simpl 108 | . . . . . . . . 9 | |
8 | simplr 520 | . . . . . . . . . 10 | |
9 | simpr 109 | . . . . . . . . . . 11 | |
10 | ancom 264 | . . . . . . . . . . . . 13 | |
11 | 10 | notbii 658 | . . . . . . . . . . . 12 |
12 | imnan 680 | . . . . . . . . . . . 12 | |
13 | 11, 12 | bitr4i 186 | . . . . . . . . . . 11 |
14 | 9, 13 | sylib 121 | . . . . . . . . . 10 |
15 | 8, 14 | mpd 13 | . . . . . . . . 9 |
16 | 7, 15, 8 | jca32 308 | . . . . . . . 8 |
17 | eldif 3125 | . . . . . . . . . 10 | |
18 | 17 | anbi1i 454 | . . . . . . . . 9 |
19 | anandir 581 | . . . . . . . . 9 | |
20 | 18, 19 | bitri 183 | . . . . . . . 8 |
21 | 16, 20 | sylibr 133 | . . . . . . 7 |
22 | 21 | eximi 1588 | . . . . . 6 |
23 | 6, 22 | syl 14 | . . . . 5 |
24 | df-rex 2450 | . . . . 5 | |
25 | 23, 24 | sylibr 133 | . . . 4 |
26 | 1, 3, 25 | syl2anb 289 | . . 3 |
27 | 26 | ss2abi 3214 | . 2 |
28 | dfima2 4948 | . . . 4 | |
29 | dfima2 4948 | . . . 4 | |
30 | 28, 29 | difeq12i 3238 | . . 3 |
31 | difab 3391 | . . 3 | |
32 | 30, 31 | eqtri 2186 | . 2 |
33 | dfima2 4948 | . 2 | |
34 | 27, 32, 33 | 3sstr4i 3183 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wex 1480 wcel 2136 cab 2151 wrex 2445 cdif 3113 wss 3116 class class class wbr 3982 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imadif 5268 |
Copyright terms: Public domain | W3C validator |