ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem Unicode version

Theorem imadiflem 5267
Description: One direction of imadif 5268. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )

Proof of Theorem imadiflem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2450 . . . 4  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
2 df-rex 2450 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
32notbii 658 . . . 4  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
4 alnex 1487 . . . . . . 7  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
5 19.29r 1609 . . . . . . 7  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  A. x  -.  ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
64, 5sylan2br 286 . . . . . 6  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
7 simpl 108 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  A  /\  x F y ) )
8 simplr 520 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  x F y )
9 simpr 109 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  ( x  e.  B  /\  x F y ) )
10 ancom 264 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  x F y )  <->  ( x F y  /\  x  e.  B ) )
1110notbii 658 . . . . . . . . . . . 12  |-  ( -.  ( x  e.  B  /\  x F y )  <->  -.  ( x F y  /\  x  e.  B
) )
12 imnan 680 . . . . . . . . . . . 12  |-  ( ( x F y  ->  -.  x  e.  B
)  <->  -.  ( x F y  /\  x  e.  B ) )
1311, 12bitr4i 186 . . . . . . . . . . 11  |-  ( -.  ( x  e.  B  /\  x F y )  <-> 
( x F y  ->  -.  x  e.  B ) )
149, 13sylib 121 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x F y  ->  -.  x  e.  B ) )
158, 14mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  x  e.  B )
167, 15, 8jca32 308 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
17 eldif 3125 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
1817anbi1i 454 . . . . . . . . 9  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
19 anandir 581 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2018, 19bitri 183 . . . . . . . 8  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2116, 20sylibr 133 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  ( A  \  B
)  /\  x F
y ) )
2221eximi 1588 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
236, 22syl 14 . . . . 5  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( x  e.  ( A  \  B )  /\  x F y ) )
24 df-rex 2450 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
2523, 24sylibr 133 . . . 4  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x  e.  ( A  \  B ) x F y )
261, 3, 25syl2anb 289 . . 3  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  ->  E. x  e.  ( A  \  B ) x F y )
2726ss2abi 3214 . 2  |-  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) }  C_  { y  |  E. x  e.  ( A  \  B
) x F y }
28 dfima2 4948 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
29 dfima2 4948 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
3028, 29difeq12i 3238 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
31 difab 3391 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
3230, 31eqtri 2186 . 2  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
33 dfima2 4948 . 2  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
3427, 32, 333sstr4i 3183 1  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445    \ cdif 3113    C_ wss 3116   class class class wbr 3982   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imadif  5268
  Copyright terms: Public domain W3C validator