ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmin Unicode version

Theorem dmin 4819
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin  |-  dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )

Proof of Theorem dmin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1624 . . 3  |-  ( E. y ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B )  -> 
( E. y <.
x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
2 vex 2733 . . . . 5  |-  x  e. 
_V
32eldm2 4809 . . . 4  |-  ( x  e.  dom  ( A  i^i  B )  <->  E. y <. x ,  y >.  e.  ( A  i^i  B
) )
4 elin 3310 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  i^i  B
)  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B ) )
54exbii 1598 . . . 4  |-  ( E. y <. x ,  y
>.  e.  ( A  i^i  B )  <->  E. y ( <.
x ,  y >.  e.  A  /\  <. x ,  y >.  e.  B
) )
63, 5bitri 183 . . 3  |-  ( x  e.  dom  ( A  i^i  B )  <->  E. y
( <. x ,  y
>.  e.  A  /\  <. x ,  y >.  e.  B
) )
7 elin 3310 . . . 4  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( x  e.  dom  A  /\  x  e.  dom  B ) )
82eldm2 4809 . . . . 5  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
92eldm2 4809 . . . . 5  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
108, 9anbi12i 457 . . . 4  |-  ( ( x  e.  dom  A  /\  x  e.  dom  B )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
117, 10bitri 183 . . 3  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. y <. x ,  y
>.  e.  B ) )
121, 6, 113imtr4i 200 . 2  |-  ( x  e.  dom  ( A  i^i  B )  ->  x  e.  ( dom  A  i^i  dom  B )
)
1312ssriv 3151 1  |-  dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1485    e. wcel 2141    i^i cin 3120    C_ wss 3121   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  rnin  5020
  Copyright terms: Public domain W3C validator