ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmin Unicode version

Theorem dmin 4874
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin  |-  dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )

Proof of Theorem dmin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1645 . . 3  |-  ( E. y ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B )  -> 
( E. y <.
x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
2 vex 2766 . . . . 5  |-  x  e. 
_V
32eldm2 4864 . . . 4  |-  ( x  e.  dom  ( A  i^i  B )  <->  E. y <. x ,  y >.  e.  ( A  i^i  B
) )
4 elin 3346 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  i^i  B
)  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  y
>.  e.  B ) )
54exbii 1619 . . . 4  |-  ( E. y <. x ,  y
>.  e.  ( A  i^i  B )  <->  E. y ( <.
x ,  y >.  e.  A  /\  <. x ,  y >.  e.  B
) )
63, 5bitri 184 . . 3  |-  ( x  e.  dom  ( A  i^i  B )  <->  E. y
( <. x ,  y
>.  e.  A  /\  <. x ,  y >.  e.  B
) )
7 elin 3346 . . . 4  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( x  e.  dom  A  /\  x  e.  dom  B ) )
82eldm2 4864 . . . . 5  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
92eldm2 4864 . . . . 5  |-  ( x  e.  dom  B  <->  E. y <. x ,  y >.  e.  B )
108, 9anbi12i 460 . . . 4  |-  ( ( x  e.  dom  A  /\  x  e.  dom  B )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. y <. x ,  y >.  e.  B ) )
117, 10bitri 184 . . 3  |-  ( x  e.  ( dom  A  i^i  dom  B )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. y <. x ,  y
>.  e.  B ) )
121, 6, 113imtr4i 201 . 2  |-  ( x  e.  dom  ( A  i^i  B )  ->  x  e.  ( dom  A  i^i  dom  B )
)
1312ssriv 3187 1  |-  dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1506    e. wcel 2167    i^i cin 3156    C_ wss 3157   <.cop 3625   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  rnin  5079
  Copyright terms: Public domain W3C validator