Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imadif | Unicode version |
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.) |
Ref | Expression |
---|---|
imadif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandir 581 | . . . . . . . 8 | |
2 | 1 | exbii 1593 | . . . . . . 7 |
3 | 19.40 1619 | . . . . . . 7 | |
4 | 2, 3 | sylbi 120 | . . . . . 6 |
5 | nfv 1516 | . . . . . . . . . . 11 | |
6 | nfe1 1484 | . . . . . . . . . . 11 | |
7 | 5, 6 | nfan 1553 | . . . . . . . . . 10 |
8 | funmo 5203 | . . . . . . . . . . . . . 14 | |
9 | vex 2729 | . . . . . . . . . . . . . . . 16 | |
10 | vex 2729 | . . . . . . . . . . . . . . . 16 | |
11 | 9, 10 | brcnv 4787 | . . . . . . . . . . . . . . 15 |
12 | 11 | mobii 2051 | . . . . . . . . . . . . . 14 |
13 | 8, 12 | sylib 121 | . . . . . . . . . . . . 13 |
14 | mopick 2092 | . . . . . . . . . . . . 13 | |
15 | 13, 14 | sylan 281 | . . . . . . . . . . . 12 |
16 | 15 | con2d 614 | . . . . . . . . . . 11 |
17 | imnan 680 | . . . . . . . . . . 11 | |
18 | 16, 17 | sylib 121 | . . . . . . . . . 10 |
19 | 7, 18 | alrimi 1510 | . . . . . . . . 9 |
20 | 19 | ex 114 | . . . . . . . 8 |
21 | exancom 1596 | . . . . . . . 8 | |
22 | alnex 1487 | . . . . . . . 8 | |
23 | 20, 21, 22 | 3imtr3g 203 | . . . . . . 7 |
24 | 23 | anim2d 335 | . . . . . 6 |
25 | 4, 24 | syl5 32 | . . . . 5 |
26 | df-rex 2450 | . . . . . 6 | |
27 | eldif 3125 | . . . . . . . 8 | |
28 | 27 | anbi1i 454 | . . . . . . 7 |
29 | 28 | exbii 1593 | . . . . . 6 |
30 | 26, 29 | bitri 183 | . . . . 5 |
31 | df-rex 2450 | . . . . . 6 | |
32 | df-rex 2450 | . . . . . . 7 | |
33 | 32 | notbii 658 | . . . . . 6 |
34 | 31, 33 | anbi12i 456 | . . . . 5 |
35 | 25, 30, 34 | 3imtr4g 204 | . . . 4 |
36 | 35 | ss2abdv 3215 | . . 3 |
37 | dfima2 4948 | . . 3 | |
38 | dfima2 4948 | . . . . 5 | |
39 | dfima2 4948 | . . . . 5 | |
40 | 38, 39 | difeq12i 3238 | . . . 4 |
41 | difab 3391 | . . . 4 | |
42 | 40, 41 | eqtri 2186 | . . 3 |
43 | 36, 37, 42 | 3sstr4g 3185 | . 2 |
44 | imadiflem 5267 | . . 3 | |
45 | 44 | a1i 9 | . 2 |
46 | 43, 45 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wmo 2015 wcel 2136 cab 2151 wrex 2445 cdif 3113 wss 3116 class class class wbr 3982 ccnv 4603 cima 4607 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 |
This theorem is referenced by: resdif 5454 difpreima 5612 phplem4 6821 phplem4dom 6828 phplem4on 6833 cnclima 12863 |
Copyright terms: Public domain | W3C validator |