ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadif Unicode version

Theorem imadif 5061
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 556 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1539 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1565 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 119 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1464 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 1428 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1500 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 4998 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 2618 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 2618 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 4589 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 1982 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 120 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 2023 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 277 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 587 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 657 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 120 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 1458 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 113 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1542 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1431 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 202 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 330 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 32 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 df-rex 2361 . . . . . 6  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
27 eldif 2997 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2827anbi1i 446 . . . . . . 7  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
2928exbii 1539 . . . . . 6  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3026, 29bitri 182 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
31 df-rex 2361 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
32 df-rex 2361 . . . . . . 7  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
3332notbii 627 . . . . . 6  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
3431, 33anbi12i 448 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
3525, 30, 343imtr4g 203 . . . 4  |-  ( Fun  `' F  ->  ( E. x  e.  ( A 
\  B ) x F y  ->  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) ) )
3635ss2abdv 3083 . . 3  |-  ( Fun  `' F  ->  { y  |  E. x  e.  ( A  \  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) } )
37 dfima2 4745 . . 3  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
38 dfima2 4745 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
39 dfima2 4745 . . . . 5  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
4038, 39difeq12i 3105 . . . 4  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
41 difab 3257 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4240, 41eqtri 2105 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4336, 37, 423sstr4g 3056 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  C_  ( ( F " A )  \  ( F " B ) ) )
44 imadiflem 5060 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
4544a1i 9 . 2  |-  ( Fun  `' F  ->  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) ) )
4643, 45eqssd 3031 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102   A.wal 1285    = wceq 1287   E.wex 1424    e. wcel 1436   E*wmo 1946   {cab 2071   E.wrex 2356    \ cdif 2985    C_ wss 2988   class class class wbr 3822   `'ccnv 4412   "cima 4416   Fun wfun 4977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-fun 4985
This theorem is referenced by:  resdif  5240  difpreima  5391  phplem4  6525  phplem4dom  6532  phplem4on  6537
  Copyright terms: Public domain W3C validator