ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadif Unicode version

Theorem imadif 5268
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 581 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1593 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1619 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 120 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1516 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 1484 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1553 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 5203 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 2729 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 2729 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 4787 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 2051 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 121 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 2092 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 281 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 614 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 680 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 121 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 1510 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 114 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1596 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1487 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 203 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 335 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 32 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 df-rex 2450 . . . . . 6  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
27 eldif 3125 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2827anbi1i 454 . . . . . . 7  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
2928exbii 1593 . . . . . 6  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3026, 29bitri 183 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
31 df-rex 2450 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
32 df-rex 2450 . . . . . . 7  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
3332notbii 658 . . . . . 6  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
3431, 33anbi12i 456 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
3525, 30, 343imtr4g 204 . . . 4  |-  ( Fun  `' F  ->  ( E. x  e.  ( A 
\  B ) x F y  ->  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) ) )
3635ss2abdv 3215 . . 3  |-  ( Fun  `' F  ->  { y  |  E. x  e.  ( A  \  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) } )
37 dfima2 4948 . . 3  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
38 dfima2 4948 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
39 dfima2 4948 . . . . 5  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
4038, 39difeq12i 3238 . . . 4  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
41 difab 3391 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4240, 41eqtri 2186 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4336, 37, 423sstr4g 3185 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  C_  ( ( F " A )  \  ( F " B ) ) )
44 imadiflem 5267 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
4544a1i 9 . 2  |-  ( Fun  `' F  ->  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) ) )
4643, 45eqssd 3159 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480   E*wmo 2015    e. wcel 2136   {cab 2151   E.wrex 2445    \ cdif 3113    C_ wss 3116   class class class wbr 3982   `'ccnv 4603   "cima 4607   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  resdif  5454  difpreima  5612  phplem4  6821  phplem4dom  6828  phplem4on  6833  cnclima  12863
  Copyright terms: Public domain W3C validator