Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imadif | Unicode version |
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.) |
Ref | Expression |
---|---|
imadif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandir 586 | . . . . . . . 8 | |
2 | 1 | exbii 1598 | . . . . . . 7 |
3 | 19.40 1624 | . . . . . . 7 | |
4 | 2, 3 | sylbi 120 | . . . . . 6 |
5 | nfv 1521 | . . . . . . . . . . 11 | |
6 | nfe1 1489 | . . . . . . . . . . 11 | |
7 | 5, 6 | nfan 1558 | . . . . . . . . . 10 |
8 | funmo 5213 | . . . . . . . . . . . . . 14 | |
9 | vex 2733 | . . . . . . . . . . . . . . . 16 | |
10 | vex 2733 | . . . . . . . . . . . . . . . 16 | |
11 | 9, 10 | brcnv 4794 | . . . . . . . . . . . . . . 15 |
12 | 11 | mobii 2056 | . . . . . . . . . . . . . 14 |
13 | 8, 12 | sylib 121 | . . . . . . . . . . . . 13 |
14 | mopick 2097 | . . . . . . . . . . . . 13 | |
15 | 13, 14 | sylan 281 | . . . . . . . . . . . 12 |
16 | 15 | con2d 619 | . . . . . . . . . . 11 |
17 | imnan 685 | . . . . . . . . . . 11 | |
18 | 16, 17 | sylib 121 | . . . . . . . . . 10 |
19 | 7, 18 | alrimi 1515 | . . . . . . . . 9 |
20 | 19 | ex 114 | . . . . . . . 8 |
21 | exancom 1601 | . . . . . . . 8 | |
22 | alnex 1492 | . . . . . . . 8 | |
23 | 20, 21, 22 | 3imtr3g 203 | . . . . . . 7 |
24 | 23 | anim2d 335 | . . . . . 6 |
25 | 4, 24 | syl5 32 | . . . . 5 |
26 | df-rex 2454 | . . . . . 6 | |
27 | eldif 3130 | . . . . . . . 8 | |
28 | 27 | anbi1i 455 | . . . . . . 7 |
29 | 28 | exbii 1598 | . . . . . 6 |
30 | 26, 29 | bitri 183 | . . . . 5 |
31 | df-rex 2454 | . . . . . 6 | |
32 | df-rex 2454 | . . . . . . 7 | |
33 | 32 | notbii 663 | . . . . . 6 |
34 | 31, 33 | anbi12i 457 | . . . . 5 |
35 | 25, 30, 34 | 3imtr4g 204 | . . . 4 |
36 | 35 | ss2abdv 3220 | . . 3 |
37 | dfima2 4955 | . . 3 | |
38 | dfima2 4955 | . . . . 5 | |
39 | dfima2 4955 | . . . . 5 | |
40 | 38, 39 | difeq12i 3243 | . . . 4 |
41 | difab 3396 | . . . 4 | |
42 | 40, 41 | eqtri 2191 | . . 3 |
43 | 36, 37, 42 | 3sstr4g 3190 | . 2 |
44 | imadiflem 5277 | . . 3 | |
45 | 44 | a1i 9 | . 2 |
46 | 43, 45 | eqssd 3164 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1346 wceq 1348 wex 1485 wmo 2020 wcel 2141 cab 2156 wrex 2449 cdif 3118 wss 3121 class class class wbr 3989 ccnv 4610 cima 4614 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 |
This theorem is referenced by: resdif 5464 difpreima 5623 phplem4 6833 phplem4dom 6840 phplem4on 6845 cnclima 13017 |
Copyright terms: Public domain | W3C validator |