ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem Unicode version

Theorem imainlem 5402
Description: One direction of imain 5403. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )

Proof of Theorem imainlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2514 . . . . 5  |-  ( E. x  e.  ( A  i^i  B ) x F y  <->  E. x
( x  e.  ( A  i^i  B )  /\  x F y ) )
2 elin 3387 . . . . . . . . 9  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
32anbi1i 458 . . . . . . . 8  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  x F y ) )
4 anandir 593 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
53, 4bitri 184 . . . . . . 7  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
65exbii 1651 . . . . . 6  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  x F y )  /\  (
x  e.  B  /\  x F y ) ) )
7 19.40 1677 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
86, 7sylbi 121 . . . . 5  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
91, 8sylbi 121 . . . 4  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
10 df-rex 2514 . . . . 5  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
11 df-rex 2514 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
1210, 11anbi12i 460 . . . 4  |-  ( ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
139, 12sylibr 134 . . 3  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) )
1413ss2abi 3296 . 2  |-  { y  |  E. x  e.  ( A  i^i  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  E. x  e.  B  x F
y ) }
15 dfima2 5070 . 2  |-  ( F
" ( A  i^i  B ) )  =  {
y  |  E. x  e.  ( A  i^i  B
) x F y }
16 dfima2 5070 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
17 dfima2 5070 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
1816, 17ineq12i 3403 . . 3  |-  ( ( F " A )  i^i  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  i^i  { y  |  E. x  e.  B  x F
y } )
19 inab 3472 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  i^i  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2018, 19eqtri 2250 . 2  |-  ( ( F " A )  i^i  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2114, 15, 203sstr4i 3265 1  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4083   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  imain  5403
  Copyright terms: Public domain W3C validator