ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem Unicode version

Theorem imainlem 5279
Description: One direction of imain 5280. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )

Proof of Theorem imainlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2454 . . . . 5  |-  ( E. x  e.  ( A  i^i  B ) x F y  <->  E. x
( x  e.  ( A  i^i  B )  /\  x F y ) )
2 elin 3310 . . . . . . . . 9  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
32anbi1i 455 . . . . . . . 8  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  x F y ) )
4 anandir 586 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
53, 4bitri 183 . . . . . . 7  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
65exbii 1598 . . . . . 6  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  x F y )  /\  (
x  e.  B  /\  x F y ) ) )
7 19.40 1624 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
86, 7sylbi 120 . . . . 5  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
91, 8sylbi 120 . . . 4  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
10 df-rex 2454 . . . . 5  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
11 df-rex 2454 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
1210, 11anbi12i 457 . . . 4  |-  ( ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
139, 12sylibr 133 . . 3  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) )
1413ss2abi 3219 . 2  |-  { y  |  E. x  e.  ( A  i^i  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  E. x  e.  B  x F
y ) }
15 dfima2 4955 . 2  |-  ( F
" ( A  i^i  B ) )  =  {
y  |  E. x  e.  ( A  i^i  B
) x F y }
16 dfima2 4955 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
17 dfima2 4955 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
1816, 17ineq12i 3326 . . 3  |-  ( ( F " A )  i^i  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  i^i  { y  |  E. x  e.  B  x F
y } )
19 inab 3395 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  i^i  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2018, 19eqtri 2191 . 2  |-  ( ( F " A )  i^i  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2114, 15, 203sstr4i 3188 1  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1485    e. wcel 2141   {cab 2156   E.wrex 2449    i^i cin 3120    C_ wss 3121   class class class wbr 3989   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  imain  5280
  Copyright terms: Public domain W3C validator