Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imainlem | Unicode version |
Description: One direction of imain 5270. This direction does not require . (Contributed by Jim Kingdon, 25-Dec-2018.) |
Ref | Expression |
---|---|
imainlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . . . . 5 | |
2 | elin 3305 | . . . . . . . . 9 | |
3 | 2 | anbi1i 454 | . . . . . . . 8 |
4 | anandir 581 | . . . . . . . 8 | |
5 | 3, 4 | bitri 183 | . . . . . . 7 |
6 | 5 | exbii 1593 | . . . . . 6 |
7 | 19.40 1619 | . . . . . 6 | |
8 | 6, 7 | sylbi 120 | . . . . 5 |
9 | 1, 8 | sylbi 120 | . . . 4 |
10 | df-rex 2450 | . . . . 5 | |
11 | df-rex 2450 | . . . . 5 | |
12 | 10, 11 | anbi12i 456 | . . . 4 |
13 | 9, 12 | sylibr 133 | . . 3 |
14 | 13 | ss2abi 3214 | . 2 |
15 | dfima2 4948 | . 2 | |
16 | dfima2 4948 | . . . 4 | |
17 | dfima2 4948 | . . . 4 | |
18 | 16, 17 | ineq12i 3321 | . . 3 |
19 | inab 3390 | . . 3 | |
20 | 18, 19 | eqtri 2186 | . 2 |
21 | 14, 15, 20 | 3sstr4i 3183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wex 1480 wcel 2136 cab 2151 wrex 2445 cin 3115 wss 3116 class class class wbr 3982 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imain 5270 |
Copyright terms: Public domain | W3C validator |