ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainlem Unicode version

Theorem imainlem 5374
Description: One direction of imain 5375. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imainlem  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )

Proof of Theorem imainlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2492 . . . . 5  |-  ( E. x  e.  ( A  i^i  B ) x F y  <->  E. x
( x  e.  ( A  i^i  B )  /\  x F y ) )
2 elin 3364 . . . . . . . . 9  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
32anbi1i 458 . . . . . . . 8  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  x F y ) )
4 anandir 591 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
53, 4bitri 184 . . . . . . 7  |-  ( ( x  e.  ( A  i^i  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) ) )
65exbii 1629 . . . . . 6  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  x F y )  /\  (
x  e.  B  /\  x F y ) ) )
7 19.40 1655 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
86, 7sylbi 121 . . . . 5  |-  ( E. x ( x  e.  ( A  i^i  B
)  /\  x F
y )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
91, 8sylbi 121 . . . 4  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
10 df-rex 2492 . . . . 5  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
11 df-rex 2492 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
1210, 11anbi12i 460 . . . 4  |-  ( ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( x  e.  B  /\  x F y ) ) )
139, 12sylibr 134 . . 3  |-  ( E. x  e.  ( A  i^i  B ) x F y  ->  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) )
1413ss2abi 3273 . 2  |-  { y  |  E. x  e.  ( A  i^i  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  E. x  e.  B  x F
y ) }
15 dfima2 5043 . 2  |-  ( F
" ( A  i^i  B ) )  =  {
y  |  E. x  e.  ( A  i^i  B
) x F y }
16 dfima2 5043 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
17 dfima2 5043 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
1816, 17ineq12i 3380 . . 3  |-  ( ( F " A )  i^i  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  i^i  { y  |  E. x  e.  B  x F
y } )
19 inab 3449 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  i^i  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2018, 19eqtri 2228 . 2  |-  ( ( F " A )  i^i  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  E. x  e.  B  x F y ) }
2114, 15, 203sstr4i 3242 1  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1516    e. wcel 2178   {cab 2193   E.wrex 2487    i^i cin 3173    C_ wss 3174   class class class wbr 4059   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  imain  5375
  Copyright terms: Public domain W3C validator