![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocl3gaf | Unicode version |
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
vtocl3gaf.a |
![]() ![]() ![]() ![]() |
vtocl3gaf.b |
![]() ![]() ![]() ![]() |
vtocl3gaf.c |
![]() ![]() ![]() ![]() |
vtocl3gaf.d |
![]() ![]() ![]() ![]() |
vtocl3gaf.e |
![]() ![]() ![]() ![]() |
vtocl3gaf.f |
![]() ![]() ![]() ![]() |
vtocl3gaf.1 |
![]() ![]() ![]() ![]() |
vtocl3gaf.2 |
![]() ![]() ![]() ![]() |
vtocl3gaf.3 |
![]() ![]() ![]() ![]() |
vtocl3gaf.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocl3gaf.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocl3gaf.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocl3gaf.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtocl3gaf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl3gaf.a |
. . 3
![]() ![]() ![]() ![]() | |
2 | vtocl3gaf.b |
. . 3
![]() ![]() ![]() ![]() | |
3 | vtocl3gaf.c |
. . 3
![]() ![]() ![]() ![]() | |
4 | vtocl3gaf.d |
. . 3
![]() ![]() ![]() ![]() | |
5 | vtocl3gaf.e |
. . 3
![]() ![]() ![]() ![]() | |
6 | vtocl3gaf.f |
. . 3
![]() ![]() ![]() ![]() | |
7 | 1 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
8 | nfv 1466 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | nfv 1466 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 7, 8, 9 | nf3an 1503 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | vtocl3gaf.1 |
. . . 4
![]() ![]() ![]() ![]() | |
12 | 10, 11 | nfim 1509 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 4 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
15 | nfv 1466 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 13, 14, 15 | nf3an 1503 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | vtocl3gaf.2 |
. . . 4
![]() ![]() ![]() ![]() | |
18 | 16, 17 | nfim 1509 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 3 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
20 | 5 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 6 | nfel1 2239 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
22 | 19, 20, 21 | nf3an 1503 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | vtocl3gaf.3 |
. . . 4
![]() ![]() ![]() ![]() | |
24 | 22, 23 | nfim 1509 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | eleq1 2150 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 25 | 3anbi1d 1252 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | vtocl3gaf.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | 26, 27 | imbi12d 232 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | eleq1 2150 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 29 | 3anbi2d 1253 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | vtocl3gaf.5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | 30, 31 | imbi12d 232 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | eleq1 2150 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | 3anbi3d 1254 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | vtocl3gaf.6 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 34, 35 | imbi12d 232 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | vtocl3gaf.7 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | 1, 2, 3, 4, 5, 6, 12, 18, 24, 28, 32, 36, 37 | vtocl3gf 2682 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 38 | pm2.43i 48 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 |
This theorem is referenced by: vtocl3ga 2689 |
Copyright terms: Public domain | W3C validator |