| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodlema | Unicode version | ||
| Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| islmod.v |
|
| islmod.a |
|
| islmod.s |
|
| islmod.f |
|
| islmod.k |
|
| islmod.p |
|
| islmod.t |
|
| islmod.u |
|
| Ref | Expression |
|---|---|
| lmodlema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v |
. . . . . 6
| |
| 2 | islmod.a |
. . . . . 6
| |
| 3 | islmod.s |
. . . . . 6
| |
| 4 | islmod.f |
. . . . . 6
| |
| 5 | islmod.k |
. . . . . 6
| |
| 6 | islmod.p |
. . . . . 6
| |
| 7 | islmod.t |
. . . . . 6
| |
| 8 | islmod.u |
. . . . . 6
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13923 |
. . . . 5
|
| 10 | 9 | simp3bi 1016 |
. . . 4
|
| 11 | oveq1 5932 |
. . . . . . . . . 10
| |
| 12 | 11 | oveq1d 5940 |
. . . . . . . . 9
|
| 13 | oveq1 5932 |
. . . . . . . . . 10
| |
| 14 | 13 | oveq1d 5940 |
. . . . . . . . 9
|
| 15 | 12, 14 | eqeq12d 2211 |
. . . . . . . 8
|
| 16 | 15 | 3anbi3d 1329 |
. . . . . . 7
|
| 17 | oveq1 5932 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 5940 |
. . . . . . . . 9
|
| 19 | oveq1 5932 |
. . . . . . . . 9
| |
| 20 | 18, 19 | eqeq12d 2211 |
. . . . . . . 8
|
| 21 | 20 | anbi1d 465 |
. . . . . . 7
|
| 22 | 16, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | 2ralbidv 2521 |
. . . . 5
|
| 24 | oveq1 5932 |
. . . . . . . . 9
| |
| 25 | 24 | eleq1d 2265 |
. . . . . . . 8
|
| 26 | oveq1 5932 |
. . . . . . . . 9
| |
| 27 | oveq1 5932 |
. . . . . . . . . 10
| |
| 28 | 24, 27 | oveq12d 5943 |
. . . . . . . . 9
|
| 29 | 26, 28 | eqeq12d 2211 |
. . . . . . . 8
|
| 30 | oveq2 5933 |
. . . . . . . . . 10
| |
| 31 | 30 | oveq1d 5940 |
. . . . . . . . 9
|
| 32 | 24 | oveq2d 5941 |
. . . . . . . . 9
|
| 33 | 31, 32 | eqeq12d 2211 |
. . . . . . . 8
|
| 34 | 25, 29, 33 | 3anbi123d 1323 |
. . . . . . 7
|
| 35 | oveq2 5933 |
. . . . . . . . . 10
| |
| 36 | 35 | oveq1d 5940 |
. . . . . . . . 9
|
| 37 | 24 | oveq2d 5941 |
. . . . . . . . 9
|
| 38 | 36, 37 | eqeq12d 2211 |
. . . . . . . 8
|
| 39 | 38 | anbi1d 465 |
. . . . . . 7
|
| 40 | 34, 39 | anbi12d 473 |
. . . . . 6
|
| 41 | 40 | 2ralbidv 2521 |
. . . . 5
|
| 42 | 23, 41 | rspc2v 2881 |
. . . 4
|
| 43 | 10, 42 | mpan9 281 |
. . 3
|
| 44 | oveq2 5933 |
. . . . . . . 8
| |
| 45 | 44 | oveq2d 5941 |
. . . . . . 7
|
| 46 | oveq2 5933 |
. . . . . . . 8
| |
| 47 | 46 | oveq2d 5941 |
. . . . . . 7
|
| 48 | 45, 47 | eqeq12d 2211 |
. . . . . 6
|
| 49 | 48 | 3anbi2d 1328 |
. . . . 5
|
| 50 | 49 | anbi1d 465 |
. . . 4
|
| 51 | oveq2 5933 |
. . . . . . 7
| |
| 52 | 51 | eleq1d 2265 |
. . . . . 6
|
| 53 | oveq1 5932 |
. . . . . . . 8
| |
| 54 | 53 | oveq2d 5941 |
. . . . . . 7
|
| 55 | 51 | oveq1d 5940 |
. . . . . . 7
|
| 56 | 54, 55 | eqeq12d 2211 |
. . . . . 6
|
| 57 | oveq2 5933 |
. . . . . . 7
| |
| 58 | oveq2 5933 |
. . . . . . . 8
| |
| 59 | 58, 51 | oveq12d 5943 |
. . . . . . 7
|
| 60 | 57, 59 | eqeq12d 2211 |
. . . . . 6
|
| 61 | 52, 56, 60 | 3anbi123d 1323 |
. . . . 5
|
| 62 | oveq2 5933 |
. . . . . . 7
| |
| 63 | 51 | oveq2d 5941 |
. . . . . . 7
|
| 64 | 62, 63 | eqeq12d 2211 |
. . . . . 6
|
| 65 | oveq2 5933 |
. . . . . . 7
| |
| 66 | id 19 |
. . . . . . 7
| |
| 67 | 65, 66 | eqeq12d 2211 |
. . . . . 6
|
| 68 | 64, 67 | anbi12d 473 |
. . . . 5
|
| 69 | 61, 68 | anbi12d 473 |
. . . 4
|
| 70 | 50, 69 | rspc2v 2881 |
. . 3
|
| 71 | 43, 70 | syl5com 29 |
. 2
|
| 72 | 71 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-lmod 13921 |
| This theorem is referenced by: lmodvscl 13937 lmodvsdi 13943 lmodvsdir 13944 lmodvsass 13945 lmodvs1 13948 |
| Copyright terms: Public domain | W3C validator |