| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lmodlema | Unicode version | ||
| Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| islmod.v | 
 | 
| islmod.a | 
 | 
| islmod.s | 
 | 
| islmod.f | 
 | 
| islmod.k | 
 | 
| islmod.p | 
 | 
| islmod.t | 
 | 
| islmod.u | 
 | 
| Ref | Expression | 
|---|---|
| lmodlema | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | islmod.v | 
. . . . . 6
 | |
| 2 | islmod.a | 
. . . . . 6
 | |
| 3 | islmod.s | 
. . . . . 6
 | |
| 4 | islmod.f | 
. . . . . 6
 | |
| 5 | islmod.k | 
. . . . . 6
 | |
| 6 | islmod.p | 
. . . . . 6
 | |
| 7 | islmod.t | 
. . . . . 6
 | |
| 8 | islmod.u | 
. . . . . 6
 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13847 | 
. . . . 5
 | 
| 10 | 9 | simp3bi 1016 | 
. . . 4
 | 
| 11 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 12 | 11 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 13 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 14 | 13 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 15 | 12, 14 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 16 | 15 | 3anbi3d 1329 | 
. . . . . . 7
 | 
| 17 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 18 | 17 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 19 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 20 | 18, 19 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 21 | 20 | anbi1d 465 | 
. . . . . . 7
 | 
| 22 | 16, 21 | anbi12d 473 | 
. . . . . 6
 | 
| 23 | 22 | 2ralbidv 2521 | 
. . . . 5
 | 
| 24 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 25 | 24 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 26 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 27 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 28 | 24, 27 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 29 | 26, 28 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 30 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 31 | 30 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 32 | 24 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 33 | 31, 32 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 34 | 25, 29, 33 | 3anbi123d 1323 | 
. . . . . . 7
 | 
| 35 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 36 | 35 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 37 | 24 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 38 | 36, 37 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 39 | 38 | anbi1d 465 | 
. . . . . . 7
 | 
| 40 | 34, 39 | anbi12d 473 | 
. . . . . 6
 | 
| 41 | 40 | 2ralbidv 2521 | 
. . . . 5
 | 
| 42 | 23, 41 | rspc2v 2881 | 
. . . 4
 | 
| 43 | 10, 42 | mpan9 281 | 
. . 3
 | 
| 44 | oveq2 5930 | 
. . . . . . . 8
 | |
| 45 | 44 | oveq2d 5938 | 
. . . . . . 7
 | 
| 46 | oveq2 5930 | 
. . . . . . . 8
 | |
| 47 | 46 | oveq2d 5938 | 
. . . . . . 7
 | 
| 48 | 45, 47 | eqeq12d 2211 | 
. . . . . 6
 | 
| 49 | 48 | 3anbi2d 1328 | 
. . . . 5
 | 
| 50 | 49 | anbi1d 465 | 
. . . 4
 | 
| 51 | oveq2 5930 | 
. . . . . . 7
 | |
| 52 | 51 | eleq1d 2265 | 
. . . . . 6
 | 
| 53 | oveq1 5929 | 
. . . . . . . 8
 | |
| 54 | 53 | oveq2d 5938 | 
. . . . . . 7
 | 
| 55 | 51 | oveq1d 5937 | 
. . . . . . 7
 | 
| 56 | 54, 55 | eqeq12d 2211 | 
. . . . . 6
 | 
| 57 | oveq2 5930 | 
. . . . . . 7
 | |
| 58 | oveq2 5930 | 
. . . . . . . 8
 | |
| 59 | 58, 51 | oveq12d 5940 | 
. . . . . . 7
 | 
| 60 | 57, 59 | eqeq12d 2211 | 
. . . . . 6
 | 
| 61 | 52, 56, 60 | 3anbi123d 1323 | 
. . . . 5
 | 
| 62 | oveq2 5930 | 
. . . . . . 7
 | |
| 63 | 51 | oveq2d 5938 | 
. . . . . . 7
 | 
| 64 | 62, 63 | eqeq12d 2211 | 
. . . . . 6
 | 
| 65 | oveq2 5930 | 
. . . . . . 7
 | |
| 66 | id 19 | 
. . . . . . 7
 | |
| 67 | 65, 66 | eqeq12d 2211 | 
. . . . . 6
 | 
| 68 | 64, 67 | anbi12d 473 | 
. . . . 5
 | 
| 69 | 61, 68 | anbi12d 473 | 
. . . 4
 | 
| 70 | 50, 69 | rspc2v 2881 | 
. . 3
 | 
| 71 | 43, 70 | syl5com 29 | 
. 2
 | 
| 72 | 71 | 3impia 1202 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-lmod 13845 | 
| This theorem is referenced by: lmodvscl 13861 lmodvsdi 13867 lmodvsdir 13868 lmodvsass 13869 lmodvs1 13872 | 
| Copyright terms: Public domain | W3C validator |