| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | Unicode version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 |
|
| Ref | Expression |
|---|---|
| 3anbi3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. 2
| |
| 2 | 3anbi1d.1 |
. 2
| |
| 3 | 1, 2 | 3anbi13d 1327 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ceqsex3v 2815 ceqsex4v 2816 ceqsex8v 2818 vtocl3gaf 2842 mob 2955 ordsoexmid 4610 tfr1onlemaccex 6434 tfrcllemaccex 6447 fseq1m1p1 10217 summodc 11694 fsum3 11698 divalglemnn 12229 divalglemeunn 12232 divalglemex 12233 divalglemeuneg 12234 mhmlem 13450 ring1 13821 lmodlema 14054 ivthreinc 15117 dvmptfsum 15197 |
| Copyright terms: Public domain | W3C validator |