ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d Unicode version

Theorem 3anbi3d 1331
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
3anbi3d  |-  ( ph  ->  ( ( th  /\  ta  /\  ps )  <->  ( th  /\  ta  /\  ch )
) )

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2  |-  ( ph  ->  ( th  <->  th )
)
2 3anbi1d.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 23anbi13d 1327 1  |-  ( ph  ->  ( ( th  /\  ta  /\  ps )  <->  ( th  /\  ta  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ceqsex3v  2820  ceqsex4v  2821  ceqsex8v  2823  vtocl3gaf  2847  mob  2962  ordsoexmid  4628  tfr1onlemaccex  6457  tfrcllemaccex  6470  fseq1m1p1  10252  pfxsuff1eqwrdeq  11190  summodc  11809  fsum3  11813  divalglemnn  12344  divalglemeunn  12347  divalglemex  12348  divalglemeuneg  12349  mhmlem  13565  ring1  13936  lmodlema  14169  ivthreinc  15232  dvmptfsum  15312
  Copyright terms: Public domain W3C validator