| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | Unicode version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 |
|
| Ref | Expression |
|---|---|
| 3anbi3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. 2
| |
| 2 | 3anbi1d.1 |
. 2
| |
| 3 | 1, 2 | 3anbi13d 1327 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ceqsex3v 2820 ceqsex4v 2821 ceqsex8v 2823 vtocl3gaf 2847 mob 2962 ordsoexmid 4628 tfr1onlemaccex 6457 tfrcllemaccex 6470 fseq1m1p1 10252 pfxsuff1eqwrdeq 11190 summodc 11809 fsum3 11813 divalglemnn 12344 divalglemeunn 12347 divalglemex 12348 divalglemeuneg 12349 mhmlem 13565 ring1 13936 lmodlema 14169 ivthreinc 15232 dvmptfsum 15312 |
| Copyright terms: Public domain | W3C validator |