| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | Unicode version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 |
|
| Ref | Expression |
|---|---|
| 3anbi3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. 2
| |
| 2 | 3anbi1d.1 |
. 2
| |
| 3 | 1, 2 | 3anbi13d 1348 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ceqsex3v 2843 ceqsex4v 2844 ceqsex8v 2846 vtocl3gaf 2870 mob 2985 ordsoexmid 4654 tfr1onlemaccex 6494 tfrcllemaccex 6507 fseq1m1p1 10291 pfxsuff1eqwrdeq 11231 summodc 11894 fsum3 11898 divalglemnn 12429 divalglemeunn 12432 divalglemex 12433 divalglemeuneg 12434 mhmlem 13651 ring1 14022 lmodlema 14256 ivthreinc 15319 dvmptfsum 15399 |
| Copyright terms: Public domain | W3C validator |