ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3d Unicode version

Theorem 3anbi3d 1352
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
3anbi3d  |-  ( ph  ->  ( ( th  /\  ta  /\  ps )  <->  ( th  /\  ta  /\  ch )
) )

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 172 . 2  |-  ( ph  ->  ( th  <->  th )
)
2 3anbi1d.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 23anbi13d 1348 1  |-  ( ph  ->  ( ( th  /\  ta  /\  ps )  <->  ( th  /\  ta  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  ceqsex3v  2843  ceqsex4v  2844  ceqsex8v  2846  vtocl3gaf  2870  mob  2985  ordsoexmid  4654  tfr1onlemaccex  6494  tfrcllemaccex  6507  fseq1m1p1  10291  pfxsuff1eqwrdeq  11231  summodc  11894  fsum3  11898  divalglemnn  12429  divalglemeunn  12432  divalglemex  12433  divalglemeuneg  12434  mhmlem  13651  ring1  14022  lmodlema  14256  ivthreinc  15319  dvmptfsum  15399
  Copyright terms: Public domain W3C validator