| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi3d | Unicode version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 |
|
| Ref | Expression |
|---|---|
| 3anbi3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 172 |
. 2
| |
| 2 | 3anbi1d.1 |
. 2
| |
| 3 | 1, 2 | 3anbi13d 1327 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ceqsex3v 2815 ceqsex4v 2816 ceqsex8v 2818 vtocl3gaf 2842 mob 2955 ordsoexmid 4611 tfr1onlemaccex 6436 tfrcllemaccex 6449 fseq1m1p1 10219 pfxsuff1eqwrdeq 11153 summodc 11727 fsum3 11731 divalglemnn 12262 divalglemeunn 12265 divalglemex 12266 divalglemeuneg 12267 mhmlem 13483 ring1 13854 lmodlema 14087 ivthreinc 15150 dvmptfsum 15230 |
| Copyright terms: Public domain | W3C validator |