| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version | ||
| Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
| Ref | Expression |
|---|---|
| ordsoexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsoexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtriexmidlem 4608 |
. . . . 5
| |
| 2 | 1 | elexi 2812 |
. . . 4
|
| 3 | 2 | sucid 4505 |
. . 3
|
| 4 | 1 | onsuci 4605 |
. . . 4
|
| 5 | suc0 4499 |
. . . . 5
| |
| 6 | 0elon 4480 |
. . . . . 6
| |
| 7 | 6 | onsuci 4605 |
. . . . 5
|
| 8 | 5, 7 | eqeltrri 2303 |
. . . 4
|
| 9 | eleq1 2292 |
. . . . . . 7
| |
| 10 | 9 | 3anbi1d 1350 |
. . . . . 6
|
| 11 | eleq1 2292 |
. . . . . . 7
| |
| 12 | eleq1 2292 |
. . . . . . . 8
| |
| 13 | 12 | orbi1d 796 |
. . . . . . 7
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 10, 14 | imbi12d 234 |
. . . . 5
|
| 16 | 4 | elexi 2812 |
. . . . . 6
|
| 17 | eleq1 2292 |
. . . . . . . 8
| |
| 18 | 17 | 3anbi2d 1351 |
. . . . . . 7
|
| 19 | eleq2 2293 |
. . . . . . . 8
| |
| 20 | eleq2 2293 |
. . . . . . . . 9
| |
| 21 | 20 | orbi2d 795 |
. . . . . . . 8
|
| 22 | 19, 21 | imbi12d 234 |
. . . . . . 7
|
| 23 | 18, 22 | imbi12d 234 |
. . . . . 6
|
| 24 | p0ex 4271 |
. . . . . . 7
| |
| 25 | eleq1 2292 |
. . . . . . . . 9
| |
| 26 | 25 | 3anbi3d 1352 |
. . . . . . . 8
|
| 27 | eleq2 2293 |
. . . . . . . . . 10
| |
| 28 | eleq1 2292 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | orbi12d 798 |
. . . . . . . . 9
|
| 30 | 29 | imbi2d 230 |
. . . . . . . 8
|
| 31 | 26, 30 | imbi12d 234 |
. . . . . . 7
|
| 32 | ordsoexmid.1 |
. . . . . . . . . . 11
| |
| 33 | df-iso 4385 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | mpbi 145 |
. . . . . . . . . 10
|
| 35 | 34 | simpri 113 |
. . . . . . . . 9
|
| 36 | epel 4380 |
. . . . . . . . . . . 12
| |
| 37 | epel 4380 |
. . . . . . . . . . . . 13
| |
| 38 | epel 4380 |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | orbi12i 769 |
. . . . . . . . . . . 12
|
| 40 | 36, 39 | imbi12i 239 |
. . . . . . . . . . 11
|
| 41 | 40 | 2ralbii 2538 |
. . . . . . . . . 10
|
| 42 | 41 | ralbii 2536 |
. . . . . . . . 9
|
| 43 | 35, 42 | mpbi 145 |
. . . . . . . 8
|
| 44 | 43 | rspec3 2620 |
. . . . . . 7
|
| 45 | 24, 31, 44 | vtocl 2855 |
. . . . . 6
|
| 46 | 16, 23, 45 | vtocl 2855 |
. . . . 5
|
| 47 | 2, 15, 46 | vtocl 2855 |
. . . 4
|
| 48 | 1, 4, 8, 47 | mp3an 1371 |
. . 3
|
| 49 | 2 | elsn 3682 |
. . . . 5
|
| 50 | ordtriexmidlem2 4609 |
. . . . 5
| |
| 51 | 49, 50 | sylbi 121 |
. . . 4
|
| 52 | elirr 4630 |
. . . . . . 7
| |
| 53 | elrabi 2956 |
. . . . . . 7
| |
| 54 | 52, 53 | mto 666 |
. . . . . 6
|
| 55 | elsuci 4491 |
. . . . . . 7
| |
| 56 | 55 | ord 729 |
. . . . . 6
|
| 57 | 54, 56 | mpi 15 |
. . . . 5
|
| 58 | 0ex 4210 |
. . . . . . 7
| |
| 59 | biidd 172 |
. . . . . . 7
| |
| 60 | 58, 59 | rabsnt 3741 |
. . . . . 6
|
| 61 | 60 | eqcoms 2232 |
. . . . 5
|
| 62 | 57, 61 | syl 14 |
. . . 4
|
| 63 | 51, 62 | orim12i 764 |
. . 3
|
| 64 | 3, 48, 63 | mp2b 8 |
. 2
|
| 65 | orcom 733 |
. 2
| |
| 66 | 64, 65 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-eprel 4377 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |