Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version |
Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
Ref | Expression |
---|---|
ordsoexmid.1 |
Ref | Expression |
---|---|
ordsoexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtriexmidlem 4496 | . . . . 5 | |
2 | 1 | elexi 2738 | . . . 4 |
3 | 2 | sucid 4395 | . . 3 |
4 | 1 | onsuci 4493 | . . . 4 |
5 | suc0 4389 | . . . . 5 | |
6 | 0elon 4370 | . . . . . 6 | |
7 | 6 | onsuci 4493 | . . . . 5 |
8 | 5, 7 | eqeltrri 2240 | . . . 4 |
9 | eleq1 2229 | . . . . . . 7 | |
10 | 9 | 3anbi1d 1306 | . . . . . 6 |
11 | eleq1 2229 | . . . . . . 7 | |
12 | eleq1 2229 | . . . . . . . 8 | |
13 | 12 | orbi1d 781 | . . . . . . 7 |
14 | 11, 13 | imbi12d 233 | . . . . . 6 |
15 | 10, 14 | imbi12d 233 | . . . . 5 |
16 | 4 | elexi 2738 | . . . . . 6 |
17 | eleq1 2229 | . . . . . . . 8 | |
18 | 17 | 3anbi2d 1307 | . . . . . . 7 |
19 | eleq2 2230 | . . . . . . . 8 | |
20 | eleq2 2230 | . . . . . . . . 9 | |
21 | 20 | orbi2d 780 | . . . . . . . 8 |
22 | 19, 21 | imbi12d 233 | . . . . . . 7 |
23 | 18, 22 | imbi12d 233 | . . . . . 6 |
24 | p0ex 4167 | . . . . . . 7 | |
25 | eleq1 2229 | . . . . . . . . 9 | |
26 | 25 | 3anbi3d 1308 | . . . . . . . 8 |
27 | eleq2 2230 | . . . . . . . . . 10 | |
28 | eleq1 2229 | . . . . . . . . . 10 | |
29 | 27, 28 | orbi12d 783 | . . . . . . . . 9 |
30 | 29 | imbi2d 229 | . . . . . . . 8 |
31 | 26, 30 | imbi12d 233 | . . . . . . 7 |
32 | ordsoexmid.1 | . . . . . . . . . . 11 | |
33 | df-iso 4275 | . . . . . . . . . . 11 | |
34 | 32, 33 | mpbi 144 | . . . . . . . . . 10 |
35 | 34 | simpri 112 | . . . . . . . . 9 |
36 | epel 4270 | . . . . . . . . . . . 12 | |
37 | epel 4270 | . . . . . . . . . . . . 13 | |
38 | epel 4270 | . . . . . . . . . . . . 13 | |
39 | 37, 38 | orbi12i 754 | . . . . . . . . . . . 12 |
40 | 36, 39 | imbi12i 238 | . . . . . . . . . . 11 |
41 | 40 | 2ralbii 2474 | . . . . . . . . . 10 |
42 | 41 | ralbii 2472 | . . . . . . . . 9 |
43 | 35, 42 | mpbi 144 | . . . . . . . 8 |
44 | 43 | rspec3 2556 | . . . . . . 7 |
45 | 24, 31, 44 | vtocl 2780 | . . . . . 6 |
46 | 16, 23, 45 | vtocl 2780 | . . . . 5 |
47 | 2, 15, 46 | vtocl 2780 | . . . 4 |
48 | 1, 4, 8, 47 | mp3an 1327 | . . 3 |
49 | 2 | elsn 3592 | . . . . 5 |
50 | ordtriexmidlem2 4497 | . . . . 5 | |
51 | 49, 50 | sylbi 120 | . . . 4 |
52 | elirr 4518 | . . . . . . 7 | |
53 | elrabi 2879 | . . . . . . 7 | |
54 | 52, 53 | mto 652 | . . . . . 6 |
55 | elsuci 4381 | . . . . . . 7 | |
56 | 55 | ord 714 | . . . . . 6 |
57 | 54, 56 | mpi 15 | . . . . 5 |
58 | 0ex 4109 | . . . . . . 7 | |
59 | biidd 171 | . . . . . . 7 | |
60 | 58, 59 | rabsnt 3651 | . . . . . 6 |
61 | 60 | eqcoms 2168 | . . . . 5 |
62 | 57, 61 | syl 14 | . . . 4 |
63 | 51, 62 | orim12i 749 | . . 3 |
64 | 3, 48, 63 | mp2b 8 | . 2 |
65 | orcom 718 | . 2 | |
66 | 64, 65 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 wral 2444 crab 2448 c0 3409 csn 3576 class class class wbr 3982 cep 4265 wpo 4272 wor 4273 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |