Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version |
Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
Ref | Expression |
---|---|
ordsoexmid.1 |
Ref | Expression |
---|---|
ordsoexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtriexmidlem 4503 | . . . . 5 | |
2 | 1 | elexi 2742 | . . . 4 |
3 | 2 | sucid 4402 | . . 3 |
4 | 1 | onsuci 4500 | . . . 4 |
5 | suc0 4396 | . . . . 5 | |
6 | 0elon 4377 | . . . . . 6 | |
7 | 6 | onsuci 4500 | . . . . 5 |
8 | 5, 7 | eqeltrri 2244 | . . . 4 |
9 | eleq1 2233 | . . . . . . 7 | |
10 | 9 | 3anbi1d 1311 | . . . . . 6 |
11 | eleq1 2233 | . . . . . . 7 | |
12 | eleq1 2233 | . . . . . . . 8 | |
13 | 12 | orbi1d 786 | . . . . . . 7 |
14 | 11, 13 | imbi12d 233 | . . . . . 6 |
15 | 10, 14 | imbi12d 233 | . . . . 5 |
16 | 4 | elexi 2742 | . . . . . 6 |
17 | eleq1 2233 | . . . . . . . 8 | |
18 | 17 | 3anbi2d 1312 | . . . . . . 7 |
19 | eleq2 2234 | . . . . . . . 8 | |
20 | eleq2 2234 | . . . . . . . . 9 | |
21 | 20 | orbi2d 785 | . . . . . . . 8 |
22 | 19, 21 | imbi12d 233 | . . . . . . 7 |
23 | 18, 22 | imbi12d 233 | . . . . . 6 |
24 | p0ex 4174 | . . . . . . 7 | |
25 | eleq1 2233 | . . . . . . . . 9 | |
26 | 25 | 3anbi3d 1313 | . . . . . . . 8 |
27 | eleq2 2234 | . . . . . . . . . 10 | |
28 | eleq1 2233 | . . . . . . . . . 10 | |
29 | 27, 28 | orbi12d 788 | . . . . . . . . 9 |
30 | 29 | imbi2d 229 | . . . . . . . 8 |
31 | 26, 30 | imbi12d 233 | . . . . . . 7 |
32 | ordsoexmid.1 | . . . . . . . . . . 11 | |
33 | df-iso 4282 | . . . . . . . . . . 11 | |
34 | 32, 33 | mpbi 144 | . . . . . . . . . 10 |
35 | 34 | simpri 112 | . . . . . . . . 9 |
36 | epel 4277 | . . . . . . . . . . . 12 | |
37 | epel 4277 | . . . . . . . . . . . . 13 | |
38 | epel 4277 | . . . . . . . . . . . . 13 | |
39 | 37, 38 | orbi12i 759 | . . . . . . . . . . . 12 |
40 | 36, 39 | imbi12i 238 | . . . . . . . . . . 11 |
41 | 40 | 2ralbii 2478 | . . . . . . . . . 10 |
42 | 41 | ralbii 2476 | . . . . . . . . 9 |
43 | 35, 42 | mpbi 144 | . . . . . . . 8 |
44 | 43 | rspec3 2560 | . . . . . . 7 |
45 | 24, 31, 44 | vtocl 2784 | . . . . . 6 |
46 | 16, 23, 45 | vtocl 2784 | . . . . 5 |
47 | 2, 15, 46 | vtocl 2784 | . . . 4 |
48 | 1, 4, 8, 47 | mp3an 1332 | . . 3 |
49 | 2 | elsn 3599 | . . . . 5 |
50 | ordtriexmidlem2 4504 | . . . . 5 | |
51 | 49, 50 | sylbi 120 | . . . 4 |
52 | elirr 4525 | . . . . . . 7 | |
53 | elrabi 2883 | . . . . . . 7 | |
54 | 52, 53 | mto 657 | . . . . . 6 |
55 | elsuci 4388 | . . . . . . 7 | |
56 | 55 | ord 719 | . . . . . 6 |
57 | 54, 56 | mpi 15 | . . . . 5 |
58 | 0ex 4116 | . . . . . . 7 | |
59 | biidd 171 | . . . . . . 7 | |
60 | 58, 59 | rabsnt 3658 | . . . . . 6 |
61 | 60 | eqcoms 2173 | . . . . 5 |
62 | 57, 61 | syl 14 | . . . 4 |
63 | 51, 62 | orim12i 754 | . . 3 |
64 | 3, 48, 63 | mp2b 8 | . 2 |
65 | orcom 723 | . 2 | |
66 | 64, 65 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 wral 2448 crab 2452 c0 3414 csn 3583 class class class wbr 3989 cep 4272 wpo 4279 wor 4280 con0 4348 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-eprel 4274 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |