| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version | ||
| Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| ordsoexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| ordsoexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtriexmidlem 4555 | 
. . . . 5
 | |
| 2 | 1 | elexi 2775 | 
. . . 4
 | 
| 3 | 2 | sucid 4452 | 
. . 3
 | 
| 4 | 1 | onsuci 4552 | 
. . . 4
 | 
| 5 | suc0 4446 | 
. . . . 5
 | |
| 6 | 0elon 4427 | 
. . . . . 6
 | |
| 7 | 6 | onsuci 4552 | 
. . . . 5
 | 
| 8 | 5, 7 | eqeltrri 2270 | 
. . . 4
 | 
| 9 | eleq1 2259 | 
. . . . . . 7
 | |
| 10 | 9 | 3anbi1d 1327 | 
. . . . . 6
 | 
| 11 | eleq1 2259 | 
. . . . . . 7
 | |
| 12 | eleq1 2259 | 
. . . . . . . 8
 | |
| 13 | 12 | orbi1d 792 | 
. . . . . . 7
 | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . . 6
 | 
| 15 | 10, 14 | imbi12d 234 | 
. . . . 5
 | 
| 16 | 4 | elexi 2775 | 
. . . . . 6
 | 
| 17 | eleq1 2259 | 
. . . . . . . 8
 | |
| 18 | 17 | 3anbi2d 1328 | 
. . . . . . 7
 | 
| 19 | eleq2 2260 | 
. . . . . . . 8
 | |
| 20 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 21 | 20 | orbi2d 791 | 
. . . . . . . 8
 | 
| 22 | 19, 21 | imbi12d 234 | 
. . . . . . 7
 | 
| 23 | 18, 22 | imbi12d 234 | 
. . . . . 6
 | 
| 24 | p0ex 4221 | 
. . . . . . 7
 | |
| 25 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 26 | 25 | 3anbi3d 1329 | 
. . . . . . . 8
 | 
| 27 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 28 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 29 | 27, 28 | orbi12d 794 | 
. . . . . . . . 9
 | 
| 30 | 29 | imbi2d 230 | 
. . . . . . . 8
 | 
| 31 | 26, 30 | imbi12d 234 | 
. . . . . . 7
 | 
| 32 | ordsoexmid.1 | 
. . . . . . . . . . 11
 | |
| 33 | df-iso 4332 | 
. . . . . . . . . . 11
 | |
| 34 | 32, 33 | mpbi 145 | 
. . . . . . . . . 10
 | 
| 35 | 34 | simpri 113 | 
. . . . . . . . 9
 | 
| 36 | epel 4327 | 
. . . . . . . . . . . 12
 | |
| 37 | epel 4327 | 
. . . . . . . . . . . . 13
 | |
| 38 | epel 4327 | 
. . . . . . . . . . . . 13
 | |
| 39 | 37, 38 | orbi12i 765 | 
. . . . . . . . . . . 12
 | 
| 40 | 36, 39 | imbi12i 239 | 
. . . . . . . . . . 11
 | 
| 41 | 40 | 2ralbii 2505 | 
. . . . . . . . . 10
 | 
| 42 | 41 | ralbii 2503 | 
. . . . . . . . 9
 | 
| 43 | 35, 42 | mpbi 145 | 
. . . . . . . 8
 | 
| 44 | 43 | rspec3 2587 | 
. . . . . . 7
 | 
| 45 | 24, 31, 44 | vtocl 2818 | 
. . . . . 6
 | 
| 46 | 16, 23, 45 | vtocl 2818 | 
. . . . 5
 | 
| 47 | 2, 15, 46 | vtocl 2818 | 
. . . 4
 | 
| 48 | 1, 4, 8, 47 | mp3an 1348 | 
. . 3
 | 
| 49 | 2 | elsn 3638 | 
. . . . 5
 | 
| 50 | ordtriexmidlem2 4556 | 
. . . . 5
 | |
| 51 | 49, 50 | sylbi 121 | 
. . . 4
 | 
| 52 | elirr 4577 | 
. . . . . . 7
 | |
| 53 | elrabi 2917 | 
. . . . . . 7
 | |
| 54 | 52, 53 | mto 663 | 
. . . . . 6
 | 
| 55 | elsuci 4438 | 
. . . . . . 7
 | |
| 56 | 55 | ord 725 | 
. . . . . 6
 | 
| 57 | 54, 56 | mpi 15 | 
. . . . 5
 | 
| 58 | 0ex 4160 | 
. . . . . . 7
 | |
| 59 | biidd 172 | 
. . . . . . 7
 | |
| 60 | 58, 59 | rabsnt 3697 | 
. . . . . 6
 | 
| 61 | 60 | eqcoms 2199 | 
. . . . 5
 | 
| 62 | 57, 61 | syl 14 | 
. . . 4
 | 
| 63 | 51, 62 | orim12i 760 | 
. . 3
 | 
| 64 | 3, 48, 63 | mp2b 8 | 
. 2
 | 
| 65 | orcom 729 | 
. 2
 | |
| 66 | 64, 65 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-eprel 4324 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |