| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version | ||
| Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
| Ref | Expression |
|---|---|
| ordsoexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsoexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtriexmidlem 4572 |
. . . . 5
| |
| 2 | 1 | elexi 2786 |
. . . 4
|
| 3 | 2 | sucid 4469 |
. . 3
|
| 4 | 1 | onsuci 4569 |
. . . 4
|
| 5 | suc0 4463 |
. . . . 5
| |
| 6 | 0elon 4444 |
. . . . . 6
| |
| 7 | 6 | onsuci 4569 |
. . . . 5
|
| 8 | 5, 7 | eqeltrri 2280 |
. . . 4
|
| 9 | eleq1 2269 |
. . . . . . 7
| |
| 10 | 9 | 3anbi1d 1329 |
. . . . . 6
|
| 11 | eleq1 2269 |
. . . . . . 7
| |
| 12 | eleq1 2269 |
. . . . . . . 8
| |
| 13 | 12 | orbi1d 793 |
. . . . . . 7
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 10, 14 | imbi12d 234 |
. . . . 5
|
| 16 | 4 | elexi 2786 |
. . . . . 6
|
| 17 | eleq1 2269 |
. . . . . . . 8
| |
| 18 | 17 | 3anbi2d 1330 |
. . . . . . 7
|
| 19 | eleq2 2270 |
. . . . . . . 8
| |
| 20 | eleq2 2270 |
. . . . . . . . 9
| |
| 21 | 20 | orbi2d 792 |
. . . . . . . 8
|
| 22 | 19, 21 | imbi12d 234 |
. . . . . . 7
|
| 23 | 18, 22 | imbi12d 234 |
. . . . . 6
|
| 24 | p0ex 4237 |
. . . . . . 7
| |
| 25 | eleq1 2269 |
. . . . . . . . 9
| |
| 26 | 25 | 3anbi3d 1331 |
. . . . . . . 8
|
| 27 | eleq2 2270 |
. . . . . . . . . 10
| |
| 28 | eleq1 2269 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | orbi12d 795 |
. . . . . . . . 9
|
| 30 | 29 | imbi2d 230 |
. . . . . . . 8
|
| 31 | 26, 30 | imbi12d 234 |
. . . . . . 7
|
| 32 | ordsoexmid.1 |
. . . . . . . . . . 11
| |
| 33 | df-iso 4349 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | mpbi 145 |
. . . . . . . . . 10
|
| 35 | 34 | simpri 113 |
. . . . . . . . 9
|
| 36 | epel 4344 |
. . . . . . . . . . . 12
| |
| 37 | epel 4344 |
. . . . . . . . . . . . 13
| |
| 38 | epel 4344 |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | orbi12i 766 |
. . . . . . . . . . . 12
|
| 40 | 36, 39 | imbi12i 239 |
. . . . . . . . . . 11
|
| 41 | 40 | 2ralbii 2515 |
. . . . . . . . . 10
|
| 42 | 41 | ralbii 2513 |
. . . . . . . . 9
|
| 43 | 35, 42 | mpbi 145 |
. . . . . . . 8
|
| 44 | 43 | rspec3 2597 |
. . . . . . 7
|
| 45 | 24, 31, 44 | vtocl 2829 |
. . . . . 6
|
| 46 | 16, 23, 45 | vtocl 2829 |
. . . . 5
|
| 47 | 2, 15, 46 | vtocl 2829 |
. . . 4
|
| 48 | 1, 4, 8, 47 | mp3an 1350 |
. . 3
|
| 49 | 2 | elsn 3651 |
. . . . 5
|
| 50 | ordtriexmidlem2 4573 |
. . . . 5
| |
| 51 | 49, 50 | sylbi 121 |
. . . 4
|
| 52 | elirr 4594 |
. . . . . . 7
| |
| 53 | elrabi 2928 |
. . . . . . 7
| |
| 54 | 52, 53 | mto 664 |
. . . . . 6
|
| 55 | elsuci 4455 |
. . . . . . 7
| |
| 56 | 55 | ord 726 |
. . . . . 6
|
| 57 | 54, 56 | mpi 15 |
. . . . 5
|
| 58 | 0ex 4176 |
. . . . . . 7
| |
| 59 | biidd 172 |
. . . . . . 7
| |
| 60 | 58, 59 | rabsnt 3710 |
. . . . . 6
|
| 61 | 60 | eqcoms 2209 |
. . . . 5
|
| 62 | 57, 61 | syl 14 |
. . . 4
|
| 63 | 51, 62 | orim12i 761 |
. . 3
|
| 64 | 3, 48, 63 | mp2b 8 |
. 2
|
| 65 | orcom 730 |
. 2
| |
| 66 | 64, 65 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-tr 4148 df-eprel 4341 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |