ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelxp Unicode version

Theorem genpelxp 7319
Description: Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypothesis
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
Assertion
Ref Expression
genpelxp  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  ( ~P Q.  X.  ~P Q. ) )
Distinct variable groups:    x, y, z, w, v, A    x, B, y, z, w, v   
x, G, y, z, w, v
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpelxp
StepHypRef Expression
1 ssrab2 3182 . . . . 5  |-  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) }  C_  Q.
2 nqex 7171 . . . . . 6  |-  Q.  e.  _V
32elpw2 4082 . . . . 5  |-  ( { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) }  e.  ~P Q.  <->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) }  C_  Q. )
41, 3mpbir 145 . . . 4  |-  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) }  e.  ~P Q.
5 ssrab2 3182 . . . . 5  |-  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  B )  /\  x  =  ( y G z ) ) }  C_  Q.
62elpw2 4082 . . . . 5  |-  ( { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) }  e.  ~P Q.  <->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) }  C_  Q. )
75, 6mpbir 145 . . . 4  |-  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  B )  /\  x  =  ( y G z ) ) }  e.  ~P Q.
8 opelxpi 4571 . . . 4  |-  ( ( { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) }  e.  ~P Q.  /\  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  B )  /\  x  =  ( y G z ) ) }  e.  ~P Q. )  ->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
94, 7, 8mp2an 422 . . 3  |-  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
10 fveq2 5421 . . . . . . . . 9  |-  ( w  =  A  ->  ( 1st `  w )  =  ( 1st `  A
) )
1110eleq2d 2209 . . . . . . . 8  |-  ( w  =  A  ->  (
y  e.  ( 1st `  w )  <->  y  e.  ( 1st `  A ) ) )
12113anbi1d 1294 . . . . . . 7  |-  ( w  =  A  ->  (
( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) )  <->  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) ) )
13122rexbidv 2460 . . . . . 6  |-  ( w  =  A  ->  ( E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) )  <->  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) ) )
1413rabbidv 2675 . . . . 5  |-  ( w  =  A  ->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  w
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) }  =  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } )
15 fveq2 5421 . . . . . . . . 9  |-  ( w  =  A  ->  ( 2nd `  w )  =  ( 2nd `  A
) )
1615eleq2d 2209 . . . . . . . 8  |-  ( w  =  A  ->  (
y  e.  ( 2nd `  w )  <->  y  e.  ( 2nd `  A ) ) )
17163anbi1d 1294 . . . . . . 7  |-  ( w  =  A  ->  (
( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) )  <->  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) ) )
18172rexbidv 2460 . . . . . 6  |-  ( w  =  A  ->  ( E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) )  <->  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) ) )
1918rabbidv 2675 . . . . 5  |-  ( w  =  A  ->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  w
)  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) }  =  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } )
2014, 19opeq12d 3713 . . . 4  |-  ( w  =  A  ->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  w
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >.  = 
<. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
21 fveq2 5421 . . . . . . . . 9  |-  ( v  =  B  ->  ( 1st `  v )  =  ( 1st `  B
) )
2221eleq2d 2209 . . . . . . . 8  |-  ( v  =  B  ->  (
z  e.  ( 1st `  v )  <->  z  e.  ( 1st `  B ) ) )
23223anbi2d 1295 . . . . . . 7  |-  ( v  =  B  ->  (
( y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) )  <->  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) ) )
24232rexbidv 2460 . . . . . 6  |-  ( v  =  B  ->  ( E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) )  <->  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) ) )
2524rabbidv 2675 . . . . 5  |-  ( v  =  B  ->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) }  =  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) } )
26 fveq2 5421 . . . . . . . . 9  |-  ( v  =  B  ->  ( 2nd `  v )  =  ( 2nd `  B
) )
2726eleq2d 2209 . . . . . . . 8  |-  ( v  =  B  ->  (
z  e.  ( 2nd `  v )  <->  z  e.  ( 2nd `  B ) ) )
28273anbi2d 1295 . . . . . . 7  |-  ( v  =  B  ->  (
( y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) )  <->  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  B )  /\  x  =  ( y G z ) ) ) )
29282rexbidv 2460 . . . . . 6  |-  ( v  =  B  ->  ( E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) )  <->  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  B )  /\  x  =  ( y G z ) ) ) )
3029rabbidv 2675 . . . . 5  |-  ( v  =  B  ->  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) }  =  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } )
3125, 30opeq12d 3713 . . . 4  |-  ( v  =  B  ->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >.  = 
<. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >. )
32 genpelvl.1 . . . 4  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
3320, 31, 32ovmpog 5905 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  A )  /\  z  e.  ( 1st `  B
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )  -> 
( A F B )  =  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >. )
349, 33mp3an3 1304 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
Q.  ( y  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  B )  /\  x  =  ( y G z ) ) } ,  {
x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  B
)  /\  x  =  ( y G z ) ) } >. )
3534, 9eqeltrdi 2230 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  ( ~P Q.  X.  ~P Q. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   {crab 2420    C_ wss 3071   ~Pcpw 3510   <.cop 3530    X. cxp 4537   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088   P.cnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-qs 6435  df-ni 7112  df-nqqs 7156
This theorem is referenced by:  addclpr  7345  mulclpr  7380
  Copyright terms: Public domain W3C validator