Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eloprabi | Unicode version |
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabi.1 | |
eloprabi.2 | |
eloprabi.3 |
Ref | Expression |
---|---|
eloprabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . . 6 | |
2 | 1 | anbi1d 461 | . . . . 5 |
3 | 2 | 3exbidv 1857 | . . . 4 |
4 | df-oprab 5846 | . . . 4 | |
5 | 3, 4 | elab2g 2873 | . . 3 |
6 | 5 | ibi 175 | . 2 |
7 | vex 2729 | . . . . . . . . . . . 12 | |
8 | vex 2729 | . . . . . . . . . . . 12 | |
9 | 7, 8 | opex 4207 | . . . . . . . . . . 11 |
10 | vex 2729 | . . . . . . . . . . 11 | |
11 | 9, 10 | op1std 6116 | . . . . . . . . . 10 |
12 | 11 | fveq2d 5490 | . . . . . . . . 9 |
13 | 7, 8 | op1st 6114 | . . . . . . . . 9 |
14 | 12, 13 | eqtr2di 2216 | . . . . . . . 8 |
15 | eloprabi.1 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | 11 | fveq2d 5490 | . . . . . . . . 9 |
18 | 7, 8 | op2nd 6115 | . . . . . . . . 9 |
19 | 17, 18 | eqtr2di 2216 | . . . . . . . 8 |
20 | eloprabi.2 | . . . . . . . 8 | |
21 | 19, 20 | syl 14 | . . . . . . 7 |
22 | 9, 10 | op2ndd 6117 | . . . . . . . . 9 |
23 | 22 | eqcomd 2171 | . . . . . . . 8 |
24 | eloprabi.3 | . . . . . . . 8 | |
25 | 23, 24 | syl 14 | . . . . . . 7 |
26 | 16, 21, 25 | 3bitrd 213 | . . . . . 6 |
27 | 26 | biimpa 294 | . . . . 5 |
28 | 27 | exlimiv 1586 | . . . 4 |
29 | 28 | exlimiv 1586 | . . 3 |
30 | 29 | exlimiv 1586 | . 2 |
31 | 6, 30 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cop 3579 cfv 5188 coprab 5843 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-oprab 5846 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |