| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloprabi | Unicode version | ||
| Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| eloprabi.1 |
|
| eloprabi.2 |
|
| eloprabi.3 |
|
| Ref | Expression |
|---|---|
| eloprabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . . . . 6
| |
| 2 | 1 | anbi1d 465 |
. . . . 5
|
| 3 | 2 | 3exbidv 1915 |
. . . 4
|
| 4 | df-oprab 6005 |
. . . 4
| |
| 5 | 3, 4 | elab2g 2950 |
. . 3
|
| 6 | 5 | ibi 176 |
. 2
|
| 7 | vex 2802 |
. . . . . . . . . . . 12
| |
| 8 | vex 2802 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | opex 4315 |
. . . . . . . . . . 11
|
| 10 | vex 2802 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | op1std 6294 |
. . . . . . . . . 10
|
| 12 | 11 | fveq2d 5631 |
. . . . . . . . 9
|
| 13 | 7, 8 | op1st 6292 |
. . . . . . . . 9
|
| 14 | 12, 13 | eqtr2di 2279 |
. . . . . . . 8
|
| 15 | eloprabi.1 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | 11 | fveq2d 5631 |
. . . . . . . . 9
|
| 18 | 7, 8 | op2nd 6293 |
. . . . . . . . 9
|
| 19 | 17, 18 | eqtr2di 2279 |
. . . . . . . 8
|
| 20 | eloprabi.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 14 |
. . . . . . 7
|
| 22 | 9, 10 | op2ndd 6295 |
. . . . . . . . 9
|
| 23 | 22 | eqcomd 2235 |
. . . . . . . 8
|
| 24 | eloprabi.3 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl 14 |
. . . . . . 7
|
| 26 | 16, 21, 25 | 3bitrd 214 |
. . . . . 6
|
| 27 | 26 | biimpa 296 |
. . . . 5
|
| 28 | 27 | exlimiv 1644 |
. . . 4
|
| 29 | 28 | exlimiv 1644 |
. . 3
|
| 30 | 29 | exlimiv 1644 |
. 2
|
| 31 | 6, 30 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-oprab 6005 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |