| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloprabi | Unicode version | ||
| Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| eloprabi.1 |
|
| eloprabi.2 |
|
| eloprabi.3 |
|
| Ref | Expression |
|---|---|
| eloprabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. . . . . 6
| |
| 2 | 1 | anbi1d 465 |
. . . . 5
|
| 3 | 2 | 3exbidv 1893 |
. . . 4
|
| 4 | df-oprab 5971 |
. . . 4
| |
| 5 | 3, 4 | elab2g 2927 |
. . 3
|
| 6 | 5 | ibi 176 |
. 2
|
| 7 | vex 2779 |
. . . . . . . . . . . 12
| |
| 8 | vex 2779 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | opex 4291 |
. . . . . . . . . . 11
|
| 10 | vex 2779 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | op1std 6257 |
. . . . . . . . . 10
|
| 12 | 11 | fveq2d 5603 |
. . . . . . . . 9
|
| 13 | 7, 8 | op1st 6255 |
. . . . . . . . 9
|
| 14 | 12, 13 | eqtr2di 2257 |
. . . . . . . 8
|
| 15 | eloprabi.1 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | 11 | fveq2d 5603 |
. . . . . . . . 9
|
| 18 | 7, 8 | op2nd 6256 |
. . . . . . . . 9
|
| 19 | 17, 18 | eqtr2di 2257 |
. . . . . . . 8
|
| 20 | eloprabi.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 14 |
. . . . . . 7
|
| 22 | 9, 10 | op2ndd 6258 |
. . . . . . . . 9
|
| 23 | 22 | eqcomd 2213 |
. . . . . . . 8
|
| 24 | eloprabi.3 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl 14 |
. . . . . . 7
|
| 26 | 16, 21, 25 | 3bitrd 214 |
. . . . . 6
|
| 27 | 26 | biimpa 296 |
. . . . 5
|
| 28 | 27 | exlimiv 1622 |
. . . 4
|
| 29 | 28 | exlimiv 1622 |
. . 3
|
| 30 | 29 | exlimiv 1622 |
. 2
|
| 31 | 6, 30 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-oprab 5971 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |