| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfi | Unicode version | ||
| Description: The Principle of
Transfinite Induction.  Theorem 7.17 of [TakeutiZaring]
       p. 39.  This principle states that if  (Contributed by NM, 18-Feb-2004.)  | 
| Ref | Expression | 
|---|---|
| tfi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. . . . . . 7
 | |
| 2 | imdi 250 | 
. . . . . . . 8
 | |
| 3 | 2 | albii 1484 | 
. . . . . . 7
 | 
| 4 | 1, 3 | bitri 184 | 
. . . . . 6
 | 
| 5 | dfss2 3172 | 
. . . . . . . . . 10
 | |
| 6 | 5 | imbi2i 226 | 
. . . . . . . . 9
 | 
| 7 | 19.21v 1887 | 
. . . . . . . . 9
 | |
| 8 | 6, 7 | bitr4i 187 | 
. . . . . . . 8
 | 
| 9 | 8 | imbi1i 238 | 
. . . . . . 7
 | 
| 10 | 9 | albii 1484 | 
. . . . . 6
 | 
| 11 | 4, 10 | bitri 184 | 
. . . . 5
 | 
| 12 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 13 | tron 4417 | 
. . . . . . . . . . . . . 14
 | |
| 14 | dftr2 4133 | 
. . . . . . . . . . . . . 14
 | |
| 15 | 13, 14 | mpbi 145 | 
. . . . . . . . . . . . 13
 | 
| 16 | 15 | spi 1550 | 
. . . . . . . . . . . 12
 | 
| 17 | 16 | spi 1550 | 
. . . . . . . . . . 11
 | 
| 18 | 12, 17 | jca 306 | 
. . . . . . . . . 10
 | 
| 19 | 18 | imim1i 60 | 
. . . . . . . . 9
 | 
| 20 | impexp 263 | 
. . . . . . . . 9
 | |
| 21 | impexp 263 | 
. . . . . . . . . 10
 | |
| 22 | bi2.04 248 | 
. . . . . . . . . 10
 | |
| 23 | 21, 22 | bitri 184 | 
. . . . . . . . 9
 | 
| 24 | 19, 20, 23 | 3imtr3i 200 | 
. . . . . . . 8
 | 
| 25 | 24 | alimi 1469 | 
. . . . . . 7
 | 
| 26 | 25 | imim1i 60 | 
. . . . . 6
 | 
| 27 | 26 | alimi 1469 | 
. . . . 5
 | 
| 28 | 11, 27 | sylbi 121 | 
. . . 4
 | 
| 29 | 28 | adantl 277 | 
. . 3
 | 
| 30 | sbim 1972 | 
. . . . . . . . . 10
 | |
| 31 | clelsb1 2301 | 
. . . . . . . . . . 11
 | |
| 32 | clelsb1 2301 | 
. . . . . . . . . . 11
 | |
| 33 | 31, 32 | imbi12i 239 | 
. . . . . . . . . 10
 | 
| 34 | 30, 33 | bitri 184 | 
. . . . . . . . 9
 | 
| 35 | 34 | ralbii 2503 | 
. . . . . . . 8
 | 
| 36 | df-ral 2480 | 
. . . . . . . 8
 | |
| 37 | 35, 36 | bitri 184 | 
. . . . . . 7
 | 
| 38 | 37 | imbi1i 238 | 
. . . . . 6
 | 
| 39 | 38 | albii 1484 | 
. . . . 5
 | 
| 40 | ax-setind 4573 | 
. . . . 5
 | |
| 41 | 39, 40 | sylbir 135 | 
. . . 4
 | 
| 42 | dfss2 3172 | 
. . . 4
 | |
| 43 | 41, 42 | sylibr 134 | 
. . 3
 | 
| 44 | 29, 43 | syl 14 | 
. 2
 | 
| 45 | eqss 3198 | 
. . 3
 | |
| 46 | 45 | biimpri 133 | 
. 2
 | 
| 47 | 44, 46 | syldan 282 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: tfis 4619 | 
| Copyright terms: Public domain | W3C validator |