| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincosq3sgn | Unicode version | ||
| Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincosq3sgn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire 15048 |
. . 3
| |
| 2 | 3re 9067 |
. . . 4
| |
| 3 | halfpire 15054 |
. . . 4
| |
| 4 | 2, 3 | remulcli 8043 |
. . 3
|
| 5 | rexr 8075 |
. . . 4
| |
| 6 | rexr 8075 |
. . . 4
| |
| 7 | elioo2 9999 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2an 289 |
. . 3
|
| 9 | 1, 4, 8 | mp2an 426 |
. 2
|
| 10 | pidiv2halves 15057 |
. . . . . . . . 9
| |
| 11 | 10 | breq1i 4041 |
. . . . . . . 8
|
| 12 | ltaddsub 8466 |
. . . . . . . . 9
| |
| 13 | 3, 3, 12 | mp3an12 1338 |
. . . . . . . 8
|
| 14 | 11, 13 | bitr3id 194 |
. . . . . . 7
|
| 15 | ltsubadd 8462 |
. . . . . . . . 9
| |
| 16 | 3, 1, 15 | mp3an23 1340 |
. . . . . . . 8
|
| 17 | df-3 9053 |
. . . . . . . . . . 11
| |
| 18 | 17 | oveq1i 5933 |
. . . . . . . . . 10
|
| 19 | 2cn 9064 |
. . . . . . . . . . 11
| |
| 20 | ax-1cn 7975 |
. . . . . . . . . . 11
| |
| 21 | 3 | recni 8041 |
. . . . . . . . . . 11
|
| 22 | 19, 20, 21 | adddiri 8040 |
. . . . . . . . . 10
|
| 23 | 1 | recni 8041 |
. . . . . . . . . . . 12
|
| 24 | 2ap0 9086 |
. . . . . . . . . . . 12
| |
| 25 | 23, 19, 24 | divcanap2i 8785 |
. . . . . . . . . . 11
|
| 26 | 21 | mullidi 8032 |
. . . . . . . . . . 11
|
| 27 | 25, 26 | oveq12i 5935 |
. . . . . . . . . 10
|
| 28 | 18, 22, 27 | 3eqtrri 2222 |
. . . . . . . . 9
|
| 29 | 28 | breq2i 4042 |
. . . . . . . 8
|
| 30 | 16, 29 | bitr2di 197 |
. . . . . . 7
|
| 31 | 14, 30 | anbi12d 473 |
. . . . . 6
|
| 32 | resubcl 8293 |
. . . . . . . . 9
| |
| 33 | 3, 32 | mpan2 425 |
. . . . . . . 8
|
| 34 | sincosq2sgn 15089 |
. . . . . . . . 9
| |
| 35 | rexr 8075 |
. . . . . . . . . . 11
| |
| 36 | elioo2 9999 |
. . . . . . . . . . 11
| |
| 37 | 35, 5, 36 | syl2an 289 |
. . . . . . . . . 10
|
| 38 | 3, 1, 37 | mp2an 426 |
. . . . . . . . 9
|
| 39 | ancom 266 |
. . . . . . . . 9
| |
| 40 | 34, 38, 39 | 3imtr3i 200 |
. . . . . . . 8
|
| 41 | 33, 40 | syl3an1 1282 |
. . . . . . 7
|
| 42 | 41 | 3expib 1208 |
. . . . . 6
|
| 43 | 31, 42 | sylbid 150 |
. . . . 5
|
| 44 | 33 | resincld 11891 |
. . . . . . 7
|
| 45 | 44 | lt0neg2d 8546 |
. . . . . 6
|
| 46 | 45 | anbi2d 464 |
. . . . 5
|
| 47 | 43, 46 | sylibd 149 |
. . . 4
|
| 48 | recn 8015 |
. . . . . . . . 9
| |
| 49 | pncan3 8237 |
. . . . . . . . 9
| |
| 50 | 21, 48, 49 | sylancr 414 |
. . . . . . . 8
|
| 51 | 50 | fveq2d 5563 |
. . . . . . 7
|
| 52 | 33 | recnd 8058 |
. . . . . . . 8
|
| 53 | sinhalfpip 15082 |
. . . . . . . 8
| |
| 54 | 52, 53 | syl 14 |
. . . . . . 7
|
| 55 | 51, 54 | eqtr3d 2231 |
. . . . . 6
|
| 56 | 55 | breq1d 4044 |
. . . . 5
|
| 57 | 50 | fveq2d 5563 |
. . . . . . 7
|
| 58 | coshalfpip 15084 |
. . . . . . . 8
| |
| 59 | 52, 58 | syl 14 |
. . . . . . 7
|
| 60 | 57, 59 | eqtr3d 2231 |
. . . . . 6
|
| 61 | 60 | breq1d 4044 |
. . . . 5
|
| 62 | 56, 61 | anbi12d 473 |
. . . 4
|
| 63 | 47, 62 | sylibrd 169 |
. . 3
|
| 64 | 63 | 3impib 1203 |
. 2
|
| 65 | 9, 64 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 ax-pre-suploc 8003 ax-addf 8004 ax-mulf 8005 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-of 6137 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-frec 6451 df-1o 6476 df-oadd 6480 df-er 6594 df-map 6711 df-pm 6712 df-en 6802 df-dom 6803 df-fin 6804 df-sup 7052 df-inf 7053 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-xneg 9850 df-xadd 9851 df-ioo 9970 df-ioc 9971 df-ico 9972 df-icc 9973 df-fz 10087 df-fzo 10221 df-seqfrec 10543 df-exp 10634 df-fac 10821 df-bc 10843 df-ihash 10871 df-shft 10983 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 df-sumdc 11522 df-ef 11816 df-sin 11818 df-cos 11819 df-pi 11821 df-rest 12929 df-topgen 12948 df-psmet 14125 df-xmet 14126 df-met 14127 df-bl 14128 df-mopn 14129 df-top 14260 df-topon 14273 df-bases 14305 df-ntr 14358 df-cn 14450 df-cnp 14451 df-tx 14515 df-cncf 14833 df-limced 14918 df-dvap 14919 |
| This theorem is referenced by: sincosq4sgn 15091 |
| Copyright terms: Public domain | W3C validator |