ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq3sgn Unicode version

Theorem sincosq3sgn 14252
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 14210 . . 3  |-  pi  e.  RR
2 3re 8993 . . . 4  |-  3  e.  RR
3 halfpire 14216 . . . 4  |-  ( pi 
/  2 )  e.  RR
42, 3remulcli 7971 . . 3  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
5 rexr 8003 . . . 4  |-  ( pi  e.  RR  ->  pi  e.  RR* )
6 rexr 8003 . . . 4  |-  ( ( 3  x.  ( pi 
/  2 ) )  e.  RR  ->  (
3  x.  ( pi 
/  2 ) )  e.  RR* )
7 elioo2 9921 . . . 4  |-  ( ( pi  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
85, 6, 7syl2an 289 . . 3  |-  ( ( pi  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR )  ->  ( A  e.  ( pi (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
91, 4, 8mp2an 426 . 2  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) )
10 pidiv2halves 14219 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
1110breq1i 4011 . . . . . . . 8  |-  ( ( ( pi  /  2
)  +  ( pi 
/  2 ) )  <  A  <->  pi  <  A )
12 ltaddsub 8393 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( ( pi 
/  2 )  +  ( pi  /  2
) )  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2
) ) ) )
133, 3, 12mp3an12 1327 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  +  ( pi  /  2 ) )  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2 ) ) ) )
1411, 13bitr3id 194 . . . . . . 7  |-  ( A  e.  RR  ->  (
pi  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2 ) ) ) )
15 ltsubadd 8389 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( ( A  -  ( pi  /  2
) )  <  pi  <->  A  <  ( pi  +  ( pi  /  2
) ) ) )
163, 1, 15mp3an23 1329 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  pi  <->  A  <  ( pi  +  ( pi 
/  2 ) ) ) )
17 df-3 8979 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
1817oveq1i 5885 . . . . . . . . . 10  |-  ( 3  x.  ( pi  / 
2 ) )  =  ( ( 2  +  1 )  x.  (
pi  /  2 ) )
19 2cn 8990 . . . . . . . . . . 11  |-  2  e.  CC
20 ax-1cn 7904 . . . . . . . . . . 11  |-  1  e.  CC
213recni 7969 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  CC
2219, 20, 21adddiri 7968 . . . . . . . . . 10  |-  ( ( 2  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
231recni 7969 . . . . . . . . . . . 12  |-  pi  e.  CC
24 2ap0 9012 . . . . . . . . . . . 12  |-  2 #  0
2523, 19, 24divcanap2i 8712 . . . . . . . . . . 11  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
2621mullidi 7960 . . . . . . . . . . 11  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2725, 26oveq12i 5887 . . . . . . . . . 10  |-  ( ( 2  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( pi  +  ( pi  /  2 ) )
2818, 22, 273eqtrri 2203 . . . . . . . . 9  |-  ( pi  +  ( pi  / 
2 ) )  =  ( 3  x.  (
pi  /  2 ) )
2928breq2i 4012 . . . . . . . 8  |-  ( A  <  ( pi  +  ( pi  /  2
) )  <->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
3016, 29bitr2di 197 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  <  ( 3  x.  ( pi  /  2
) )  <->  ( A  -  ( pi  / 
2 ) )  < 
pi ) )
3114, 30anbi12d 473 . . . . . 6  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  <-> 
( ( pi  / 
2 )  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi ) ) )
32 resubcl 8221 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
333, 32mpan2 425 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
34 sincosq2sgn 14251 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
35 rexr 8003 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
36 elioo2 9921 . . . . . . . . . . 11  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( ( pi  /  2 ) (,) pi )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  ( pi 
/  2 )  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
pi ) ) )
3735, 5, 36syl2an 289 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( ( A  -  ( pi  /  2
) )  e.  ( ( pi  /  2
) (,) pi )  <-> 
( ( A  -  ( pi  /  2
) )  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi ) ) )
383, 1, 37mp2an 426 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  ( pi 
/  2 )  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
pi ) )
39 ancom 266 . . . . . . . . 9  |-  ( ( 0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 )  <->  ( ( cos `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
4034, 38, 393imtr3i 200 . . . . . . . 8  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) )
4133, 40syl3an1 1271 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) )
42413expib 1206 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) ) )
4331, 42sylbid 150 . . . . 5  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) ) )
4433resincld 11731 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
4544lt0neg2d 8473 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
4645anbi2d 464 . . . . 5  |-  ( A  e.  RR  ->  (
( ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  ( pi  /  2 ) ) ) )  <->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
4743, 46sylibd 149 . . . 4  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
48 recn 7944 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
49 pncan3 8165 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
5021, 48, 49sylancr 414 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
5150fveq2d 5520 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
5233recnd 7986 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
53 sinhalfpip 14244 . . . . . . . 8  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5452, 53syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5551, 54eqtr3d 2212 . . . . . 6  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5655breq1d 4014 . . . . 5  |-  ( A  e.  RR  ->  (
( sin `  A
)  <  0  <->  ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
5750fveq2d 5520 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
58 coshalfpip 14246 . . . . . . . 8  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
5952, 58syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6057, 59eqtr3d 2212 . . . . . 6  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6160breq1d 4014 . . . . 5  |-  ( A  e.  RR  ->  (
( cos `  A
)  <  0  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
6256, 61anbi12d 473 . . . 4  |-  ( A  e.  RR  ->  (
( ( sin `  A
)  <  0  /\  ( cos `  A )  <  0 )  <->  ( ( cos `  ( A  -  ( pi  /  2
) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0 ) ) )
6347, 62sylibrd 169 . . 3  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( sin `  A )  <  0  /\  ( cos `  A
)  <  0 ) ) )
64633impib 1201 . 2  |-  ( ( A  e.  RR  /\  pi  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )
659, 64sylbi 121 1  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816   RR*cxr 7991    < clt 7992    - cmin 8128   -ucneg 8129    / cdiv 8629   2c2 8970   3c3 8971   (,)cioo 9888   sincsin 11652   cosccos 11653   picpi 11655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931  ax-pre-suploc 7932  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-of 6083  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-map 6650  df-pm 6651  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-ioo 9892  df-ioc 9893  df-ico 9894  df-icc 9895  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-bc 10728  df-ihash 10756  df-shft 10824  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-ef 11656  df-sin 11658  df-cos 11659  df-pi 11661  df-rest 12690  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546  df-ntr 13599  df-cn 13691  df-cnp 13692  df-tx 13756  df-cncf 14061  df-limced 14128  df-dvap 14129
This theorem is referenced by:  sincosq4sgn  14253
  Copyright terms: Public domain W3C validator