ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen Unicode version

Theorem idssen 6891
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen  |-  _I  C_  ~~

Proof of Theorem idssen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4825 . 2  |-  Rel  _I
2 vex 2779 . . . . 5  |-  y  e. 
_V
32ideq 4848 . . . 4  |-  ( x  _I  y  <->  x  =  y )
4 vex 2779 . . . . 5  |-  x  e. 
_V
5 eqeng 6880 . . . . 5  |-  ( x  e.  _V  ->  (
x  =  y  ->  x  ~~  y ) )
64, 5ax-mp 5 . . . 4  |-  ( x  =  y  ->  x  ~~  y )
73, 6sylbi 121 . . 3  |-  ( x  _I  y  ->  x  ~~  y )
8 df-br 4060 . . 3  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
9 df-br 4060 . . 3  |-  ( x 
~~  y  <->  <. x ,  y >.  e.  ~~  )
107, 8, 93imtr3i 200 . 2  |-  ( <.
x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ~~  )
111, 10relssi 4784 1  |-  _I  C_  ~~
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776    C_ wss 3174   <.cop 3646   class class class wbr 4059    _I cid 4353    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-en 6851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator