ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen Unicode version

Theorem idssen 6868
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen  |-  _I  C_  ~~

Proof of Theorem idssen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4807 . 2  |-  Rel  _I
2 vex 2775 . . . . 5  |-  y  e. 
_V
32ideq 4830 . . . 4  |-  ( x  _I  y  <->  x  =  y )
4 vex 2775 . . . . 5  |-  x  e. 
_V
5 eqeng 6857 . . . . 5  |-  ( x  e.  _V  ->  (
x  =  y  ->  x  ~~  y ) )
64, 5ax-mp 5 . . . 4  |-  ( x  =  y  ->  x  ~~  y )
73, 6sylbi 121 . . 3  |-  ( x  _I  y  ->  x  ~~  y )
8 df-br 4045 . . 3  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
9 df-br 4045 . . 3  |-  ( x 
~~  y  <->  <. x ,  y >.  e.  ~~  )
107, 8, 93imtr3i 200 . 2  |-  ( <.
x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ~~  )
111, 10relssi 4766 1  |-  _I  C_  ~~
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772    C_ wss 3166   <.cop 3636   class class class wbr 4044    _I cid 4335    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator