ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen Unicode version

Theorem idssen 6777
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen  |-  _I  C_  ~~

Proof of Theorem idssen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4757 . 2  |-  Rel  _I
2 vex 2741 . . . . 5  |-  y  e. 
_V
32ideq 4780 . . . 4  |-  ( x  _I  y  <->  x  =  y )
4 vex 2741 . . . . 5  |-  x  e. 
_V
5 eqeng 6766 . . . . 5  |-  ( x  e.  _V  ->  (
x  =  y  ->  x  ~~  y ) )
64, 5ax-mp 5 . . . 4  |-  ( x  =  y  ->  x  ~~  y )
73, 6sylbi 121 . . 3  |-  ( x  _I  y  ->  x  ~~  y )
8 df-br 4005 . . 3  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
9 df-br 4005 . . 3  |-  ( x 
~~  y  <->  <. x ,  y >.  e.  ~~  )
107, 8, 93imtr3i 200 . 2  |-  ( <.
x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ~~  )
111, 10relssi 4718 1  |-  _I  C_  ~~
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2738    C_ wss 3130   <.cop 3596   class class class wbr 4004    _I cid 4289    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-en 6741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator