ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted Unicode version

Theorem limcmpted 12801
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a  |-  ( ph  ->  A  C_  CC )
limcmpted.b  |-  ( ph  ->  B  e.  CC )
limcmpted.f  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
Assertion
Ref Expression
limcmpted  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y    ph, x, y, z
Allowed substitution hint:    D( z)

Proof of Theorem limcmpted
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfcv 2281 . . . . . 6  |-  F/_ w D
2 nfcsb1v 3035 . . . . . 6  |-  F/_ z [_ w  /  z ]_ D
3 csbeq1a 3012 . . . . . 6  |-  ( z  =  w  ->  D  =  [_ w  /  z ]_ D )
41, 2, 3cbvmpt 4023 . . . . 5  |-  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D )
54a1i 9 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D
) )
65oveq1d 5789 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  D ) lim CC  B )  =  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) )
76eleq2d 2209 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  C  e.  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) ) )
8 limcmpted.f . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
98fmpttd 5575 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D ) : A --> CC )
104feq1i 5265 . . . 4  |-  ( ( z  e.  A  |->  D ) : A --> CC  <->  ( w  e.  A  |->  [_ w  /  z ]_ D
) : A --> CC )
119, 10sylib 121 . . 3  |-  ( ph  ->  ( w  e.  A  |-> 
[_ w  /  z ]_ D ) : A --> CC )
12 limcmpted.a . . 3  |-  ( ph  ->  A  C_  CC )
13 limcmpted.b . . 3  |-  ( ph  ->  B  e.  CC )
14 nfcv 2281 . . . 4  |-  F/_ z A
1514, 2nfmpt 4020 . . 3  |-  F/_ z
( w  e.  A  |-> 
[_ w  /  z ]_ D )
1611, 12, 13, 15ellimc3apf 12798 . 2  |-  ( ph  ->  ( C  e.  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) ) ) )
17 eqid 2139 . . . . . . . . . 10  |-  ( w  e.  A  |->  [_ w  /  z ]_ D
)  =  ( w  e.  A  |->  [_ w  /  z ]_ D
)
18 eqcom 2141 . . . . . . . . . . 11  |-  ( z  =  w  <->  w  =  z )
19 eqcom 2141 . . . . . . . . . . 11  |-  ( D  =  [_ w  / 
z ]_ D  <->  [_ w  / 
z ]_ D  =  D )
203, 18, 193imtr3i 199 . . . . . . . . . 10  |-  ( w  =  z  ->  [_ w  /  z ]_ D  =  D )
21 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  A )
2217, 20, 21, 8fvmptd3 5514 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) `  z
)  =  D )
2322fvoveq1d 5796 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  =  ( abs `  ( D  -  C )
) )
2423breq1d 3939 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x  <->  ( abs `  ( D  -  C
) )  <  x
) )
2524imbi2d 229 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) )
2625ralbidva 2433 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2726rexbidv 2438 . . . 4  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2827ralbidv 2437 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( D  -  C
) )  <  x
) ) )
2928anbi2d 459 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
307, 16, 293bitrd 213 1  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   [_csb 3003    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618    < clt 7800    - cmin 7933   # cap 8343   RR+crp 9441   abscabs 10769   lim CC climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545  df-limced 12794
This theorem is referenced by:  limccnp2cntop  12815  limccoap  12816
  Copyright terms: Public domain W3C validator