ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted Unicode version

Theorem limcmpted 15220
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a  |-  ( ph  ->  A  C_  CC )
limcmpted.b  |-  ( ph  ->  B  e.  CC )
limcmpted.f  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
Assertion
Ref Expression
limcmpted  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y    ph, x, y, z
Allowed substitution hint:    D( z)

Proof of Theorem limcmpted
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfcv 2349 . . . . . 6  |-  F/_ w D
2 nfcsb1v 3130 . . . . . 6  |-  F/_ z [_ w  /  z ]_ D
3 csbeq1a 3106 . . . . . 6  |-  ( z  =  w  ->  D  =  [_ w  /  z ]_ D )
41, 2, 3cbvmpt 4150 . . . . 5  |-  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D )
54a1i 9 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D
) )
65oveq1d 5977 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  D ) lim CC  B )  =  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) )
76eleq2d 2276 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  C  e.  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) ) )
8 limcmpted.f . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
98fmpttd 5753 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D ) : A --> CC )
104feq1i 5433 . . . 4  |-  ( ( z  e.  A  |->  D ) : A --> CC  <->  ( w  e.  A  |->  [_ w  /  z ]_ D
) : A --> CC )
119, 10sylib 122 . . 3  |-  ( ph  ->  ( w  e.  A  |-> 
[_ w  /  z ]_ D ) : A --> CC )
12 limcmpted.a . . 3  |-  ( ph  ->  A  C_  CC )
13 limcmpted.b . . 3  |-  ( ph  ->  B  e.  CC )
14 nfcv 2349 . . . 4  |-  F/_ z A
1514, 2nfmpt 4147 . . 3  |-  F/_ z
( w  e.  A  |-> 
[_ w  /  z ]_ D )
1611, 12, 13, 15ellimc3apf 15217 . 2  |-  ( ph  ->  ( C  e.  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) ) ) )
17 eqid 2206 . . . . . . . . . 10  |-  ( w  e.  A  |->  [_ w  /  z ]_ D
)  =  ( w  e.  A  |->  [_ w  /  z ]_ D
)
18 eqcom 2208 . . . . . . . . . . 11  |-  ( z  =  w  <->  w  =  z )
19 eqcom 2208 . . . . . . . . . . 11  |-  ( D  =  [_ w  / 
z ]_ D  <->  [_ w  / 
z ]_ D  =  D )
203, 18, 193imtr3i 200 . . . . . . . . . 10  |-  ( w  =  z  ->  [_ w  /  z ]_ D  =  D )
21 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  A )
2217, 20, 21, 8fvmptd3 5691 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) `  z
)  =  D )
2322fvoveq1d 5984 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  =  ( abs `  ( D  -  C )
) )
2423breq1d 4064 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x  <->  ( abs `  ( D  -  C
) )  <  x
) )
2524imbi2d 230 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) )
2625ralbidva 2503 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2726rexbidv 2508 . . . 4  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2827ralbidv 2507 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( D  -  C
) )  <  x
) ) )
2928anbi2d 464 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
307, 16, 293bitrd 214 1  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   [_csb 3097    C_ wss 3170   class class class wbr 4054    |-> cmpt 4116   -->wf 5281   ` cfv 5285  (class class class)co 5962   CCcc 7953    < clt 8137    - cmin 8273   # cap 8684   RR+crp 9805   abscabs 11393   lim CC climc 15211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pm 6756  df-limced 15213
This theorem is referenced by:  limccnp2cntop  15234  limccoap  15235
  Copyright terms: Public domain W3C validator