| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limcmpted | Unicode version | ||
| Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| limcmpted.a |
|
| limcmpted.b |
|
| limcmpted.f |
|
| Ref | Expression |
|---|---|
| limcmpted |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. . . . . 6
| |
| 2 | nfcsb1v 3157 |
. . . . . 6
| |
| 3 | csbeq1a 3133 |
. . . . . 6
| |
| 4 | 1, 2, 3 | cbvmpt 4178 |
. . . . 5
|
| 5 | 4 | a1i 9 |
. . . 4
|
| 6 | 5 | oveq1d 6015 |
. . 3
|
| 7 | 6 | eleq2d 2299 |
. 2
|
| 8 | limcmpted.f |
. . . . 5
| |
| 9 | 8 | fmpttd 5789 |
. . . 4
|
| 10 | 4 | feq1i 5465 |
. . . 4
|
| 11 | 9, 10 | sylib 122 |
. . 3
|
| 12 | limcmpted.a |
. . 3
| |
| 13 | limcmpted.b |
. . 3
| |
| 14 | nfcv 2372 |
. . . 4
| |
| 15 | 14, 2 | nfmpt 4175 |
. . 3
|
| 16 | 11, 12, 13, 15 | ellimc3apf 15328 |
. 2
|
| 17 | eqid 2229 |
. . . . . . . . . 10
| |
| 18 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 19 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 20 | 3, 18, 19 | 3imtr3i 200 |
. . . . . . . . . 10
|
| 21 | simpr 110 |
. . . . . . . . . 10
| |
| 22 | 17, 20, 21, 8 | fvmptd3 5727 |
. . . . . . . . 9
|
| 23 | 22 | fvoveq1d 6022 |
. . . . . . . 8
|
| 24 | 23 | breq1d 4092 |
. . . . . . 7
|
| 25 | 24 | imbi2d 230 |
. . . . . 6
|
| 26 | 25 | ralbidva 2526 |
. . . . 5
|
| 27 | 26 | rexbidv 2531 |
. . . 4
|
| 28 | 27 | ralbidv 2530 |
. . 3
|
| 29 | 28 | anbi2d 464 |
. 2
|
| 30 | 7, 16, 29 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pm 6796 df-limced 15324 |
| This theorem is referenced by: limccnp2cntop 15345 limccoap 15346 |
| Copyright terms: Public domain | W3C validator |