ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted Unicode version

Theorem limcmpted 13426
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a  |-  ( ph  ->  A  C_  CC )
limcmpted.b  |-  ( ph  ->  B  e.  CC )
limcmpted.f  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
Assertion
Ref Expression
limcmpted  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y    ph, x, y, z
Allowed substitution hint:    D( z)

Proof of Theorem limcmpted
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . . . . . 6  |-  F/_ w D
2 nfcsb1v 3082 . . . . . 6  |-  F/_ z [_ w  /  z ]_ D
3 csbeq1a 3058 . . . . . 6  |-  ( z  =  w  ->  D  =  [_ w  /  z ]_ D )
41, 2, 3cbvmpt 4084 . . . . 5  |-  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D )
54a1i 9 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D )  =  ( w  e.  A  |->  [_ w  /  z ]_ D
) )
65oveq1d 5868 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  D ) lim CC  B )  =  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) )
76eleq2d 2240 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  C  e.  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
) ) )
8 limcmpted.f . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  D  e.  CC )
98fmpttd 5651 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  D ) : A --> CC )
104feq1i 5340 . . . 4  |-  ( ( z  e.  A  |->  D ) : A --> CC  <->  ( w  e.  A  |->  [_ w  /  z ]_ D
) : A --> CC )
119, 10sylib 121 . . 3  |-  ( ph  ->  ( w  e.  A  |-> 
[_ w  /  z ]_ D ) : A --> CC )
12 limcmpted.a . . 3  |-  ( ph  ->  A  C_  CC )
13 limcmpted.b . . 3  |-  ( ph  ->  B  e.  CC )
14 nfcv 2312 . . . 4  |-  F/_ z A
1514, 2nfmpt 4081 . . 3  |-  F/_ z
( w  e.  A  |-> 
[_ w  /  z ]_ D )
1611, 12, 13, 15ellimc3apf 13423 . 2  |-  ( ph  ->  ( C  e.  ( ( w  e.  A  |-> 
[_ w  /  z ]_ D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) ) ) )
17 eqid 2170 . . . . . . . . . 10  |-  ( w  e.  A  |->  [_ w  /  z ]_ D
)  =  ( w  e.  A  |->  [_ w  /  z ]_ D
)
18 eqcom 2172 . . . . . . . . . . 11  |-  ( z  =  w  <->  w  =  z )
19 eqcom 2172 . . . . . . . . . . 11  |-  ( D  =  [_ w  / 
z ]_ D  <->  [_ w  / 
z ]_ D  =  D )
203, 18, 193imtr3i 199 . . . . . . . . . 10  |-  ( w  =  z  ->  [_ w  /  z ]_ D  =  D )
21 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  A )
2217, 20, 21, 8fvmptd3 5589 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( w  e.  A  |-> 
[_ w  /  z ]_ D ) `  z
)  =  D )
2322fvoveq1d 5875 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  =  ( abs `  ( D  -  C )
) )
2423breq1d 3999 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x  <->  ( abs `  ( D  -  C
) )  <  x
) )
2524imbi2d 229 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <-> 
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) )
2625ralbidva 2466 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( ( w  e.  A  |->  [_ w  /  z ]_ D
) `  z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2726rexbidv 2471 . . . 4  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( D  -  C ) )  < 
x ) ) )
2827ralbidv 2470 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( D  -  C
) )  <  x
) ) )
2928anbi2d 461 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( ( w  e.  A  |->  [_ w  /  z ]_ D ) `  z
)  -  C ) )  <  x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
307, 16, 293bitrd 213 1  |-  ( ph  ->  ( C  e.  ( ( z  e.  A  |->  D ) lim CC  B
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  ( D  -  C )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   [_csb 3049    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772    < clt 7954    - cmin 8090   # cap 8500   RR+crp 9610   abscabs 10961   lim CC climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pm 6629  df-limced 13419
This theorem is referenced by:  limccnp2cntop  13440  limccoap  13441
  Copyright terms: Public domain W3C validator