Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limcmpted | Unicode version |
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.) |
Ref | Expression |
---|---|
limcmpted.a | |
limcmpted.b | |
limcmpted.f |
Ref | Expression |
---|---|
limcmpted | lim # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . . . . . 6 | |
2 | nfcsb1v 3060 | . . . . . 6 | |
3 | csbeq1a 3036 | . . . . . 6 | |
4 | 1, 2, 3 | cbvmpt 4055 | . . . . 5 |
5 | 4 | a1i 9 | . . . 4 |
6 | 5 | oveq1d 5829 | . . 3 lim lim |
7 | 6 | eleq2d 2224 | . 2 lim lim |
8 | limcmpted.f | . . . . 5 | |
9 | 8 | fmpttd 5615 | . . . 4 |
10 | 4 | feq1i 5305 | . . . 4 |
11 | 9, 10 | sylib 121 | . . 3 |
12 | limcmpted.a | . . 3 | |
13 | limcmpted.b | . . 3 | |
14 | nfcv 2296 | . . . 4 | |
15 | 14, 2 | nfmpt 4052 | . . 3 |
16 | 11, 12, 13, 15 | ellimc3apf 12968 | . 2 lim # |
17 | eqid 2154 | . . . . . . . . . 10 | |
18 | eqcom 2156 | . . . . . . . . . . 11 | |
19 | eqcom 2156 | . . . . . . . . . . 11 | |
20 | 3, 18, 19 | 3imtr3i 199 | . . . . . . . . . 10 |
21 | simpr 109 | . . . . . . . . . 10 | |
22 | 17, 20, 21, 8 | fvmptd3 5554 | . . . . . . . . 9 |
23 | 22 | fvoveq1d 5836 | . . . . . . . 8 |
24 | 23 | breq1d 3971 | . . . . . . 7 |
25 | 24 | imbi2d 229 | . . . . . 6 # # |
26 | 25 | ralbidva 2450 | . . . . 5 # # |
27 | 26 | rexbidv 2455 | . . . 4 # # |
28 | 27 | ralbidv 2454 | . . 3 # # |
29 | 28 | anbi2d 460 | . 2 # # |
30 | 7, 16, 29 | 3bitrd 213 | 1 lim # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wral 2432 wrex 2433 csb 3027 wss 3098 class class class wbr 3961 cmpt 4021 wf 5159 cfv 5163 (class class class)co 5814 cc 7709 clt 7891 cmin 8025 # cap 8435 crp 9538 cabs 10874 lim climc 12962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pm 6585 df-limced 12964 |
This theorem is referenced by: limccnp2cntop 12985 limccoap 12986 |
Copyright terms: Public domain | W3C validator |