| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limcmpted | Unicode version | ||
| Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| limcmpted.a |
|
| limcmpted.b |
|
| limcmpted.f |
|
| Ref | Expression |
|---|---|
| limcmpted |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 |
. . . . . 6
| |
| 2 | nfcsb1v 3130 |
. . . . . 6
| |
| 3 | csbeq1a 3106 |
. . . . . 6
| |
| 4 | 1, 2, 3 | cbvmpt 4150 |
. . . . 5
|
| 5 | 4 | a1i 9 |
. . . 4
|
| 6 | 5 | oveq1d 5977 |
. . 3
|
| 7 | 6 | eleq2d 2276 |
. 2
|
| 8 | limcmpted.f |
. . . . 5
| |
| 9 | 8 | fmpttd 5753 |
. . . 4
|
| 10 | 4 | feq1i 5433 |
. . . 4
|
| 11 | 9, 10 | sylib 122 |
. . 3
|
| 12 | limcmpted.a |
. . 3
| |
| 13 | limcmpted.b |
. . 3
| |
| 14 | nfcv 2349 |
. . . 4
| |
| 15 | 14, 2 | nfmpt 4147 |
. . 3
|
| 16 | 11, 12, 13, 15 | ellimc3apf 15217 |
. 2
|
| 17 | eqid 2206 |
. . . . . . . . . 10
| |
| 18 | eqcom 2208 |
. . . . . . . . . . 11
| |
| 19 | eqcom 2208 |
. . . . . . . . . . 11
| |
| 20 | 3, 18, 19 | 3imtr3i 200 |
. . . . . . . . . 10
|
| 21 | simpr 110 |
. . . . . . . . . 10
| |
| 22 | 17, 20, 21, 8 | fvmptd3 5691 |
. . . . . . . . 9
|
| 23 | 22 | fvoveq1d 5984 |
. . . . . . . 8
|
| 24 | 23 | breq1d 4064 |
. . . . . . 7
|
| 25 | 24 | imbi2d 230 |
. . . . . 6
|
| 26 | 25 | ralbidva 2503 |
. . . . 5
|
| 27 | 26 | rexbidv 2508 |
. . . 4
|
| 28 | 27 | ralbidv 2507 |
. . 3
|
| 29 | 28 | anbi2d 464 |
. 2
|
| 30 | 7, 16, 29 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pm 6756 df-limced 15213 |
| This theorem is referenced by: limccnp2cntop 15234 limccoap 15235 |
| Copyright terms: Public domain | W3C validator |