ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle Unicode version

Theorem bezoutlemle 12200
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemle  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemle
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  A  /\  z  ||  B
) )
2 breq1 4037 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  D  <->  w  ||  D
) )
3 breq1 4037 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
4 breq1 4037 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
53, 4anbi12d 473 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
62, 5bibi12d 235 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
7 equcom 1720 . . . . . . 7  |-  ( z  =  w  <->  w  =  z )
8 bicom 140 . . . . . . 7  |-  ( ( ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )  <->  ( ( w 
||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <->  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
96, 7, 83imtr3i 200 . . . . . 6  |-  ( w  =  z  ->  (
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <-> 
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
10 bezoutlemgcd.4 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
116cbvralv 2729 . . . . . . . 8  |-  ( A. z  e.  ZZ  (
z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  D 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1210, 11sylib 122 . . . . . . 7  |-  ( ph  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
1312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
14 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  e.  ZZ )
159, 13, 14rspcdva 2873 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D 
<->  ( z  ||  A  /\  z  ||  B ) ) )
161, 15mpbird 167 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  ||  D
)
17 bezoutlemgcd.3 . . . . . . 7  |-  ( ph  ->  D  e.  NN0 )
1817ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN0 )
19 bezoutlemgcd.5 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
2019ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 breq1 4037 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  D  <->  0  ||  D ) )
22 breq1 4037 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  A  <->  0  ||  A ) )
23 breq1 4037 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  B  <->  0  ||  B ) )
2422, 23anbi12d 473 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( 0  ||  A  /\  0  ||  B ) ) )
2521, 24bibi12d 235 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) ) )
26 0zd 9355 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
2725, 10, 26rspcdva 2873 . . . . . . . . . 10  |-  ( ph  ->  ( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) )
2827ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  ( 0  ||  A  /\  0  ||  B ) ) )
2918nn0zd 9463 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  ZZ )
30 0dvds 11993 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  (
0  ||  D  <->  D  = 
0 ) )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  D  =  0 ) )
32 bezoutlemgcd.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3332ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A  e.  ZZ )
34 0dvds 11993 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
0  ||  A  <->  A  = 
0 ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  A 
<->  A  =  0 ) )
36 bezoutlemgcd.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
3736ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  B  e.  ZZ )
38 0dvds 11993 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  B 
<->  B  =  0 ) )
4035, 39anbi12d 473 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( ( 0 
||  A  /\  0  ||  B )  <->  ( A  =  0  /\  B  =  0 ) ) )
4128, 31, 403bitr3d 218 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( D  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
4220, 41mtbird 674 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  D  = 
0 )
4342neqned 2374 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  =/=  0
)
44 elnnne0 9280 . . . . . 6  |-  ( D  e.  NN  <->  ( D  e.  NN0  /\  D  =/=  0 ) )
4518, 43, 44sylanbrc 417 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN )
46 dvdsle 12026 . . . . 5  |-  ( ( z  e.  ZZ  /\  D  e.  NN )  ->  ( z  ||  D  ->  z  <_  D )
)
4714, 45, 46syl2anc 411 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D  ->  z  <_  D
) )
4816, 47mpd 13 . . 3  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  <_  D
)
4948ex 115 . 2  |-  ( (
ph  /\  z  e.  ZZ )  ->  ( ( z  ||  A  /\  z  ||  B )  -> 
z  <_  D )
)
5049ralrimiva 2570 1  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4034   0cc0 7896    <_ cle 8079   NNcn 9007   NN0cn0 9266   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-dvds 11970
This theorem is referenced by:  bezoutlemsup  12201
  Copyright terms: Public domain W3C validator