ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle Unicode version

Theorem bezoutlemle 12011
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemle  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemle
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  A  /\  z  ||  B
) )
2 breq1 4008 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  D  <->  w  ||  D
) )
3 breq1 4008 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
4 breq1 4008 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
53, 4anbi12d 473 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
62, 5bibi12d 235 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
7 equcom 1706 . . . . . . 7  |-  ( z  =  w  <->  w  =  z )
8 bicom 140 . . . . . . 7  |-  ( ( ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )  <->  ( ( w 
||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <->  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
96, 7, 83imtr3i 200 . . . . . 6  |-  ( w  =  z  ->  (
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <-> 
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
10 bezoutlemgcd.4 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
116cbvralv 2705 . . . . . . . 8  |-  ( A. z  e.  ZZ  (
z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  D 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1210, 11sylib 122 . . . . . . 7  |-  ( ph  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
1312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
14 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  e.  ZZ )
159, 13, 14rspcdva 2848 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D 
<->  ( z  ||  A  /\  z  ||  B ) ) )
161, 15mpbird 167 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  ||  D
)
17 bezoutlemgcd.3 . . . . . . 7  |-  ( ph  ->  D  e.  NN0 )
1817ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN0 )
19 bezoutlemgcd.5 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
2019ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 breq1 4008 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  D  <->  0  ||  D ) )
22 breq1 4008 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  A  <->  0  ||  A ) )
23 breq1 4008 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  B  <->  0  ||  B ) )
2422, 23anbi12d 473 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( 0  ||  A  /\  0  ||  B ) ) )
2521, 24bibi12d 235 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) ) )
26 0zd 9267 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
2725, 10, 26rspcdva 2848 . . . . . . . . . 10  |-  ( ph  ->  ( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) )
2827ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  ( 0  ||  A  /\  0  ||  B ) ) )
2918nn0zd 9375 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  ZZ )
30 0dvds 11820 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  (
0  ||  D  <->  D  = 
0 ) )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  D  =  0 ) )
32 bezoutlemgcd.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3332ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A  e.  ZZ )
34 0dvds 11820 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
0  ||  A  <->  A  = 
0 ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  A 
<->  A  =  0 ) )
36 bezoutlemgcd.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
3736ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  B  e.  ZZ )
38 0dvds 11820 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  B 
<->  B  =  0 ) )
4035, 39anbi12d 473 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( ( 0 
||  A  /\  0  ||  B )  <->  ( A  =  0  /\  B  =  0 ) ) )
4128, 31, 403bitr3d 218 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( D  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
4220, 41mtbird 673 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  D  = 
0 )
4342neqned 2354 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  =/=  0
)
44 elnnne0 9192 . . . . . 6  |-  ( D  e.  NN  <->  ( D  e.  NN0  /\  D  =/=  0 ) )
4518, 43, 44sylanbrc 417 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN )
46 dvdsle 11852 . . . . 5  |-  ( ( z  e.  ZZ  /\  D  e.  NN )  ->  ( z  ||  D  ->  z  <_  D )
)
4714, 45, 46syl2anc 411 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D  ->  z  <_  D
) )
4816, 47mpd 13 . . 3  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  <_  D
)
4948ex 115 . 2  |-  ( (
ph  /\  z  e.  ZZ )  ->  ( ( z  ||  A  /\  z  ||  B )  -> 
z  <_  D )
)
5049ralrimiva 2550 1  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   class class class wbr 4005   0cc0 7813    <_ cle 7995   NNcn 8921   NN0cn0 9178   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-dvds 11797
This theorem is referenced by:  bezoutlemsup  12012
  Copyright terms: Public domain W3C validator