ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle Unicode version

Theorem bezoutlemle 11732
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemle  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemle
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  A  /\  z  ||  B
) )
2 breq1 3940 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  D  <->  w  ||  D
) )
3 breq1 3940 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
4 breq1 3940 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
53, 4anbi12d 465 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
62, 5bibi12d 234 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
7 equcom 1683 . . . . . . 7  |-  ( z  =  w  <->  w  =  z )
8 bicom 139 . . . . . . 7  |-  ( ( ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )  <->  ( ( w 
||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <->  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
96, 7, 83imtr3i 199 . . . . . 6  |-  ( w  =  z  ->  (
( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) )  <-> 
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
10 bezoutlemgcd.4 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
116cbvralv 2657 . . . . . . . 8  |-  ( A. z  e.  ZZ  (
z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  D 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1210, 11sylib 121 . . . . . . 7  |-  ( ph  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
1312ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  ZZ  ( w  ||  D  <->  ( w  ||  A  /\  w  ||  B ) ) )
14 simplr 520 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  e.  ZZ )
159, 13, 14rspcdva 2798 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D 
<->  ( z  ||  A  /\  z  ||  B ) ) )
161, 15mpbird 166 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  ||  D
)
17 bezoutlemgcd.3 . . . . . . 7  |-  ( ph  ->  D  e.  NN0 )
1817ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN0 )
19 bezoutlemgcd.5 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
2019ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
21 breq1 3940 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  D  <->  0  ||  D ) )
22 breq1 3940 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  A  <->  0  ||  A ) )
23 breq1 3940 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  ||  B  <->  0  ||  B ) )
2422, 23anbi12d 465 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( 0  ||  A  /\  0  ||  B ) ) )
2521, 24bibi12d 234 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) ) )
26 0zd 9090 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
2725, 10, 26rspcdva 2798 . . . . . . . . . 10  |-  ( ph  ->  ( 0  ||  D  <->  ( 0  ||  A  /\  0  ||  B ) ) )
2827ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  ( 0  ||  A  /\  0  ||  B ) ) )
2918nn0zd 9195 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  ZZ )
30 0dvds 11549 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  (
0  ||  D  <->  D  = 
0 ) )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  D 
<->  D  =  0 ) )
32 bezoutlemgcd.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3332ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  A  e.  ZZ )
34 0dvds 11549 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
0  ||  A  <->  A  = 
0 ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  A 
<->  A  =  0 ) )
36 bezoutlemgcd.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
3736ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  B  e.  ZZ )
38 0dvds 11549 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( 0  ||  B 
<->  B  =  0 ) )
4035, 39anbi12d 465 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( ( 0 
||  A  /\  0  ||  B )  <->  ( A  =  0  /\  B  =  0 ) ) )
4128, 31, 403bitr3d 217 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( D  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
4220, 41mtbird 663 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  -.  D  = 
0 )
4342neqned 2316 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  =/=  0
)
44 elnnne0 9015 . . . . . 6  |-  ( D  e.  NN  <->  ( D  e.  NN0  /\  D  =/=  0 ) )
4518, 43, 44sylanbrc 414 . . . . 5  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  D  e.  NN )
46 dvdsle 11578 . . . . 5  |-  ( ( z  e.  ZZ  /\  D  e.  NN )  ->  ( z  ||  D  ->  z  <_  D )
)
4714, 45, 46syl2anc 409 . . . 4  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  D  ->  z  <_  D
) )
4816, 47mpd 13 . . 3  |-  ( ( ( ph  /\  z  e.  ZZ )  /\  (
z  ||  A  /\  z  ||  B ) )  ->  z  <_  D
)
4948ex 114 . 2  |-  ( (
ph  /\  z  e.  ZZ )  ->  ( ( z  ||  A  /\  z  ||  B )  -> 
z  <_  D )
)
5049ralrimiva 2508 1  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   class class class wbr 3937   0cc0 7644    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-dvds 11530
This theorem is referenced by:  bezoutlemsup  11733
  Copyright terms: Public domain W3C validator