Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bezoutlemle | Unicode version |
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both and . (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
Ref | Expression |
---|---|
bezoutlemgcd.1 | |
bezoutlemgcd.2 | |
bezoutlemgcd.3 | |
bezoutlemgcd.4 | |
bezoutlemgcd.5 |
Ref | Expression |
---|---|
bezoutlemle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | breq1 3992 | . . . . . . . 8 | |
3 | breq1 3992 | . . . . . . . . 9 | |
4 | breq1 3992 | . . . . . . . . 9 | |
5 | 3, 4 | anbi12d 470 | . . . . . . . 8 |
6 | 2, 5 | bibi12d 234 | . . . . . . 7 |
7 | equcom 1699 | . . . . . . 7 | |
8 | bicom 139 | . . . . . . 7 | |
9 | 6, 7, 8 | 3imtr3i 199 | . . . . . 6 |
10 | bezoutlemgcd.4 | . . . . . . . 8 | |
11 | 6 | cbvralv 2696 | . . . . . . . 8 |
12 | 10, 11 | sylib 121 | . . . . . . 7 |
13 | 12 | ad2antrr 485 | . . . . . 6 |
14 | simplr 525 | . . . . . 6 | |
15 | 9, 13, 14 | rspcdva 2839 | . . . . 5 |
16 | 1, 15 | mpbird 166 | . . . 4 |
17 | bezoutlemgcd.3 | . . . . . . 7 | |
18 | 17 | ad2antrr 485 | . . . . . 6 |
19 | bezoutlemgcd.5 | . . . . . . . . 9 | |
20 | 19 | ad2antrr 485 | . . . . . . . 8 |
21 | breq1 3992 | . . . . . . . . . . . 12 | |
22 | breq1 3992 | . . . . . . . . . . . . 13 | |
23 | breq1 3992 | . . . . . . . . . . . . 13 | |
24 | 22, 23 | anbi12d 470 | . . . . . . . . . . . 12 |
25 | 21, 24 | bibi12d 234 | . . . . . . . . . . 11 |
26 | 0zd 9224 | . . . . . . . . . . 11 | |
27 | 25, 10, 26 | rspcdva 2839 | . . . . . . . . . 10 |
28 | 27 | ad2antrr 485 | . . . . . . . . 9 |
29 | 18 | nn0zd 9332 | . . . . . . . . . 10 |
30 | 0dvds 11773 | . . . . . . . . . 10 | |
31 | 29, 30 | syl 14 | . . . . . . . . 9 |
32 | bezoutlemgcd.1 | . . . . . . . . . . . 12 | |
33 | 32 | ad2antrr 485 | . . . . . . . . . . 11 |
34 | 0dvds 11773 | . . . . . . . . . . 11 | |
35 | 33, 34 | syl 14 | . . . . . . . . . 10 |
36 | bezoutlemgcd.2 | . . . . . . . . . . . 12 | |
37 | 36 | ad2antrr 485 | . . . . . . . . . . 11 |
38 | 0dvds 11773 | . . . . . . . . . . 11 | |
39 | 37, 38 | syl 14 | . . . . . . . . . 10 |
40 | 35, 39 | anbi12d 470 | . . . . . . . . 9 |
41 | 28, 31, 40 | 3bitr3d 217 | . . . . . . . 8 |
42 | 20, 41 | mtbird 668 | . . . . . . 7 |
43 | 42 | neqned 2347 | . . . . . 6 |
44 | elnnne0 9149 | . . . . . 6 | |
45 | 18, 43, 44 | sylanbrc 415 | . . . . 5 |
46 | dvdsle 11804 | . . . . 5 | |
47 | 14, 45, 46 | syl2anc 409 | . . . 4 |
48 | 16, 47 | mpd 13 | . . 3 |
49 | 48 | ex 114 | . 2 |
50 | 49 | ralrimiva 2543 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wne 2340 wral 2448 class class class wbr 3989 cc0 7774 cle 7955 cn 8878 cn0 9135 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-dvds 11750 |
This theorem is referenced by: bezoutlemsup 11964 |
Copyright terms: Public domain | W3C validator |