Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid Unicode version

Theorem subctctexmid 15491
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
subctctexmid.mk  |-  ( ph  ->  om  e. Markov )
Assertion
Ref Expression
subctctexmid  |-  ( ph  -> EXMID )
Distinct variable groups:    f, s, x    ph, g    x, g
Allowed substitution hints:    ph( x, f, s)

Proof of Theorem subctctexmid
Dummy variables  y  z  h  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
2 omex 4625 . . . . . . . 8  |-  om  e.  _V
32rabex 4173 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  e.  _V
43a1i 9 . . . . . 6  |-  ( ph  ->  { z  e.  om  |  y  =  { (/)
} }  e.  _V )
5 ssrab2 3264 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  C_ 
om
6 f1oi 5538 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }
7 f1ofo 5507 . . . . . . . . 9  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }  ->  (  _I  |`  { z  e. 
om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } )
86, 7ax-mp 5 . . . . . . . 8  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
9 resiexg 4987 . . . . . . . . . 10  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } )  e.  _V )
103, 9ax-mp 5 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } )  e. 
_V
11 foeq1 5472 . . . . . . . . 9  |-  ( f  =  (  _I  |`  { z  e.  om  |  y  =  { (/) } }
)  ->  ( f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }  <->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } ) )
1210, 11spcev 2855 . . . . . . . 8  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } }  ->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
138, 12ax-mp 5 . . . . . . 7  |-  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} }
145, 13pm3.2i 272 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
15 sseq1 3202 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( s  C_  om  <->  { z  e.  om  |  y  =  { (/) } }  C_  om ) )
16 foeq2 5473 . . . . . . . . 9  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> { z  e.  om  | 
y  =  { (/) } }  <->  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1716exbidv 1836 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} }  <->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1815, 17anbi12d 473 . . . . . . 7  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  <->  ( {
z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
1918spcegv 2848 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  ( ( { z  e. 
om  |  y  =  { (/) } }  C_  om 
/\  E. f  f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
)  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
204, 14, 19mpisyl 1457 . . . . 5  |-  ( ph  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
21 foeq3 5474 . . . . . . . . . 10  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> x  <-> 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
2221exbidv 1836 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> x  <->  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
2322anbi2d 464 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> x )  <->  ( s  C_ 
om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
2423exbidv 1836 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. s ( s 
C_  om  /\  E. f 
f : s -onto-> x )  <->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
25 djueq1 7099 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
26 foeq3 5474 . . . . . . . . 9  |-  ( ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o )  -> 
( g : om -onto->
( x 1o )  <->  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( g : om -onto-> (
x 1o )  <->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2827exbidv 1836 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. g  g : om -onto-> ( x 1o ) 
<->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2924, 28imbi12d 234 . . . . . 6  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( E. s ( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  <->  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) ) )
303, 29spcv 2854 . . . . 5  |-  ( A. x ( E. s
( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  -> 
( E. s ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
311, 20, 30sylc 62 . . . 4  |-  ( ph  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
32 fveq1 5553 . . . . . . . . . . . 12  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
h `  n )  =  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n ) )
3332eqeq1d 2202 . . . . . . . . . . 11  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( h `  n
)  =  1o  <->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3433rexbidv 2495 . . . . . . . . . 10  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( E. n  e.  om  ( h `  n
)  =  1o  <->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3534notbid 668 . . . . . . . . 9  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  E. n  e.  om  ( h `  n
)  =  1o  <->  -.  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3635notbid 668 . . . . . . . 8  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  -.  E. n  e. 
om  ( h `  n )  =  1o  <->  -. 
-.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
3736, 34imbi12d 234 . . . . . . 7  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o )  <->  ( -.  -.  E. n  e.  om  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) ) )
38 subctctexmid.mk . . . . . . . . 9  |-  ( ph  ->  om  e. Markov )
39 ismkvnex 7214 . . . . . . . . . 10  |-  ( om  e. Markov  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m 
om ) ( -. 
-.  E. n  e.  om  ( h `  n
)  =  1o  ->  E. n  e.  om  (
h `  n )  =  1o ) ) )
4038, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) ) )
4138, 40mpbid 147 . . . . . . . 8  |-  ( ph  ->  A. h  e.  ( 2o  ^m  om )
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
43 1lt2o 6495 . . . . . . . . . . . 12  |-  1o  e.  2o
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  ( 1st `  (
g `  n )
)  =  (/) )  ->  1o  e.  2o )
45 0lt2o 6494 . . . . . . . . . . . 12  |-  (/)  e.  2o
4645a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  -.  ( 1st `  (
g `  n )
)  =  (/) )  ->  (/) 
e.  2o )
47 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
48 fof 5476 . . . . . . . . . . . . . . 15  |-  ( g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
4947, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
50 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  n  e.  om )
5149, 50ffvelcdmd 5694 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
52 eldju1st 7130 . . . . . . . . . . . . 13  |-  ( ( g `  n )  e.  ( { z  e.  om  |  y  =  { (/) } } 1o )  ->  ( ( 1st `  ( g `  n ) )  =  (/)  \/  ( 1st `  (
g `  n )
)  =  1o ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o ) )
54 1n0 6485 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
5554neii 2366 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
56 eqeq1 2200 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  (
( 1st `  (
g `  n )
)  =  (/)  <->  1o  =  (/) ) )
5755, 56mtbiri 676 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  -.  ( 1st `  ( g `
 n ) )  =  (/) )
5857orim2i 762 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
59 df-dc 836 . . . . . . . . . . . . 13  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  <->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
6058, 59sylibr 134 . . . . . . . . . . . 12  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6153, 60syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6244, 46, 61ifcldadc 3586 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  e.  2o )
6362fmpttd 5713 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
64 2fveq3 5559 . . . . . . . . . . . . . 14  |-  ( w  =  n  ->  ( 1st `  ( g `  w ) )  =  ( 1st `  (
g `  n )
) )
6564eqeq1d 2202 . . . . . . . . . . . . 13  |-  ( w  =  n  ->  (
( 1st `  (
g `  w )
)  =  (/)  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
6665ifbid 3578 . . . . . . . . . . . 12  |-  ( w  =  n  ->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
67 eqcom 2195 . . . . . . . . . . . 12  |-  ( w  =  n  <->  n  =  w )
68 eqcom 2195 . . . . . . . . . . . 12  |-  ( if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
6966, 67, 683imtr3i 200 . . . . . . . . . . 11  |-  ( n  =  w  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7069cbvmptv 4125 . . . . . . . . . 10  |-  ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7170feq1i 5396 . . . . . . . . 9  |-  ( ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o  <->  ( w  e.  om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7263, 71sylib 122 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
73 2onn 6574 . . . . . . . . . 10  |-  2o  e.  om
7473elexi 2772 . . . . . . . . 9  |-  2o  e.  _V
7574, 2elmap 6731 . . . . . . . 8  |-  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) 
<->  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7672, 75sylibr 134 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
7737, 42, 76rspcdva 2869 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
78 eqid 2193 . . . . . . . . . . . . 13  |-  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7978, 66, 50, 62fvmptd3 5651 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
8079eqeq1d 2202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o ) )
8151adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
82 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o )
8382eqcomd 2199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  1o  =  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) ) )
84 eqifdc 3592 . . . . . . . . . . . . . . . . . . 19  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  ->  ( 1o  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
86 eqid 2193 . . . . . . . . . . . . . . . . . . 19  |-  1o  =  1o
87 orcom 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
8855intnan 930 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )
89 biorf 745 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( -.  ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  (/) )  -> 
( ( ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  1o )  <-> 
( ( -.  ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  (/) )  \/  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) ) ) )
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
9187, 90bitr4i 187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) )
9286, 91mpbiran2 943 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( 1st `  ( g `  n
) )  =  (/) )
9385, 92bitrdi 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9493adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9583, 94mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1st `  ( g `  n ) )  =  (/) )
96 eldju2ndl 7131 . . . . . . . . . . . . . . 15  |-  ( ( ( g `  n
)  e.  ( { z  e.  om  | 
y  =  { (/) } } 1o )  /\  ( 1st `  ( g `  n ) )  =  (/) )  ->  ( 2nd `  ( g `  n
) )  e.  {
z  e.  om  | 
y  =  { (/) } } )
9781, 95, 96syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 2nd `  ( g `  n ) )  e. 
{ z  e.  om  |  y  =  { (/)
} } )
98 biidd 172 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 2nd `  (
g `  n )
)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
9998elrab 2916 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( g `
 n ) )  e.  { z  e. 
om  |  y  =  { (/) } }  <->  ( ( 2nd `  ( g `  n ) )  e. 
om  /\  y  =  { (/) } ) )
10097, 99sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
( 2nd `  (
g `  n )
)  e.  om  /\  y  =  { (/) } ) )
101100simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  y  =  { (/) } )
102101ex 115 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o 
->  y  =  { (/)
} ) )
10380, 102sylbid 150 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
104103rexlimdva 2611 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
105 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
106 biidd 172 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
107 peano1 4626 . . . . . . . . . . . . . . 15  |-  (/)  e.  om
108107a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  om )
109 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
110106, 108, 109elrabd 2918 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  { z  e. 
om  |  y  =  { (/) } } )
111 djulcl 7110 . . . . . . . . . . . . 13  |-  ( (/)  e.  { z  e.  om  |  y  =  { (/)
} }  ->  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
112110, 111syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
(inl `  (/) )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
113 foelrn 5795 . . . . . . . . . . . 12  |-  ( ( g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o )  /\  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
114105, 112, 113syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
11579adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
116 fveq2 5554 . . . . . . . . . . . . . . . 16  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (inl `  (/) ) )  =  ( 1st `  ( g `
 n ) ) )
117 1stinl 7133 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  om  ->  ( 1st `  (inl `  (/) ) )  =  (/) )
118107, 117ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  (inl `  (/) ) )  =  (/)
119116, 118eqtr3di 2241 . . . . . . . . . . . . . . 15  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (
g `  n )
)  =  (/) )
120119iftrued 3564 . . . . . . . . . . . . . 14  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  if ( ( 1st `  ( g `
 n ) )  =  (/) ,  1o ,  (/) )  =  1o )
121115, 120sylan9eq 2246 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  /\  y  =  { (/)
} )  /\  n  e.  om )  /\  (inl `  (/) )  =  (
g `  n )
)  ->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o )
122121ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( (inl `  (/) )  =  ( g `
 n )  -> 
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
123122reximdva 2596 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
( E. n  e. 
om  (inl `  (/) )  =  ( g `  n
)  ->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
124114, 123mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o )
125124ex 115 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
y  =  { (/) }  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
126104, 125impbid 129 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  y  =  { (/) } ) )
127126notbid 668 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  -.  y  =  { (/) } ) )
128127notbid 668 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o  <->  -. 
-.  y  =  { (/)
} ) )
12977, 128, 1263imtr3d 202 . . . . 5  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
130 df-stab 832 . . . . 5  |-  (STAB  y  =  { (/) }  <->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
131129, 130sylibr 134 . . . 4  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  -> STAB  y  =  { (/) } )
13231, 131exlimddv 1910 . . 3  |-  ( ph  -> STAB  y  =  { (/) } )
133132adantr 276 . 2  |-  ( (
ph  /\  y  C_  {
(/) } )  -> STAB  y  =  { (/) } )
134133exmid1stab 4237 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  STAB wstab 831  DECID wdc 835   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3153   (/)c0 3446   ifcif 3557   {csn 3618    |-> cmpt 4090  EXMIDwem 4223    _I cid 4319   omcom 4622    |` cres 4661   -->wf 5250   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   1oc1o 6462   2oc2o 6463    ^m cmap 6702   ⊔ cdju 7096  inlcinl 7104  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-exmid 4224  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-map 6704  df-dju 7097  df-inl 7106  df-inr 7107  df-markov 7211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator