Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid Unicode version

Theorem subctctexmid 14406
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
subctctexmid.mk  |-  ( ph  ->  om  e. Markov )
Assertion
Ref Expression
subctctexmid  |-  ( ph  -> EXMID )
Distinct variable groups:    f, s, x    ph, g    x, g
Allowed substitution hints:    ph( x, f, s)

Proof of Theorem subctctexmid
Dummy variables  y  z  h  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
2 omex 4589 . . . . . . . 8  |-  om  e.  _V
32rabex 4144 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  e.  _V
43a1i 9 . . . . . 6  |-  ( ph  ->  { z  e.  om  |  y  =  { (/)
} }  e.  _V )
5 ssrab2 3240 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  C_ 
om
6 f1oi 5495 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }
7 f1ofo 5464 . . . . . . . . 9  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }  ->  (  _I  |`  { z  e. 
om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } )
86, 7ax-mp 5 . . . . . . . 8  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
9 resiexg 4948 . . . . . . . . . 10  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } )  e.  _V )
103, 9ax-mp 5 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } )  e. 
_V
11 foeq1 5430 . . . . . . . . 9  |-  ( f  =  (  _I  |`  { z  e.  om  |  y  =  { (/) } }
)  ->  ( f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }  <->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } ) )
1210, 11spcev 2832 . . . . . . . 8  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } }  ->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
138, 12ax-mp 5 . . . . . . 7  |-  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} }
145, 13pm3.2i 272 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
15 sseq1 3178 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( s  C_  om  <->  { z  e.  om  |  y  =  { (/) } }  C_  om ) )
16 foeq2 5431 . . . . . . . . 9  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> { z  e.  om  | 
y  =  { (/) } }  <->  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1716exbidv 1825 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} }  <->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1815, 17anbi12d 473 . . . . . . 7  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  <->  ( {
z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
1918spcegv 2825 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  ( ( { z  e. 
om  |  y  =  { (/) } }  C_  om 
/\  E. f  f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
)  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
204, 14, 19mpisyl 1446 . . . . 5  |-  ( ph  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
21 foeq3 5432 . . . . . . . . . 10  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> x  <-> 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
2221exbidv 1825 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> x  <->  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
2322anbi2d 464 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> x )  <->  ( s  C_ 
om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
2423exbidv 1825 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. s ( s 
C_  om  /\  E. f 
f : s -onto-> x )  <->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
25 djueq1 7033 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
26 foeq3 5432 . . . . . . . . 9  |-  ( ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o )  -> 
( g : om -onto->
( x 1o )  <->  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( g : om -onto-> (
x 1o )  <->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2827exbidv 1825 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. g  g : om -onto-> ( x 1o ) 
<->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2924, 28imbi12d 234 . . . . . 6  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( E. s ( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  <->  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) ) )
303, 29spcv 2831 . . . . 5  |-  ( A. x ( E. s
( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  -> 
( E. s ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
311, 20, 30sylc 62 . . . 4  |-  ( ph  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
32 fveq1 5510 . . . . . . . . . . . 12  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
h `  n )  =  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n ) )
3332eqeq1d 2186 . . . . . . . . . . 11  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( h `  n
)  =  1o  <->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3433rexbidv 2478 . . . . . . . . . 10  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( E. n  e.  om  ( h `  n
)  =  1o  <->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3534notbid 667 . . . . . . . . 9  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  E. n  e.  om  ( h `  n
)  =  1o  <->  -.  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3635notbid 667 . . . . . . . 8  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  -.  E. n  e. 
om  ( h `  n )  =  1o  <->  -. 
-.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
3736, 34imbi12d 234 . . . . . . 7  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o )  <->  ( -.  -.  E. n  e.  om  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) ) )
38 subctctexmid.mk . . . . . . . . 9  |-  ( ph  ->  om  e. Markov )
39 ismkvnex 7147 . . . . . . . . . 10  |-  ( om  e. Markov  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m 
om ) ( -. 
-.  E. n  e.  om  ( h `  n
)  =  1o  ->  E. n  e.  om  (
h `  n )  =  1o ) ) )
4038, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) ) )
4138, 40mpbid 147 . . . . . . . 8  |-  ( ph  ->  A. h  e.  ( 2o  ^m  om )
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
43 1lt2o 6437 . . . . . . . . . . . 12  |-  1o  e.  2o
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  ( 1st `  (
g `  n )
)  =  (/) )  ->  1o  e.  2o )
45 0lt2o 6436 . . . . . . . . . . . 12  |-  (/)  e.  2o
4645a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  -.  ( 1st `  (
g `  n )
)  =  (/) )  ->  (/) 
e.  2o )
47 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
48 fof 5434 . . . . . . . . . . . . . . 15  |-  ( g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
4947, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
50 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  n  e.  om )
5149, 50ffvelcdmd 5648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
52 eldju1st 7064 . . . . . . . . . . . . 13  |-  ( ( g `  n )  e.  ( { z  e.  om  |  y  =  { (/) } } 1o )  ->  ( ( 1st `  ( g `  n ) )  =  (/)  \/  ( 1st `  (
g `  n )
)  =  1o ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o ) )
54 1n0 6427 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
5554neii 2349 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
56 eqeq1 2184 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  (
( 1st `  (
g `  n )
)  =  (/)  <->  1o  =  (/) ) )
5755, 56mtbiri 675 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  -.  ( 1st `  ( g `
 n ) )  =  (/) )
5857orim2i 761 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
59 df-dc 835 . . . . . . . . . . . . 13  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  <->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
6058, 59sylibr 134 . . . . . . . . . . . 12  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6153, 60syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6244, 46, 61ifcldadc 3563 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  e.  2o )
6362fmpttd 5667 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
64 2fveq3 5516 . . . . . . . . . . . . . 14  |-  ( w  =  n  ->  ( 1st `  ( g `  w ) )  =  ( 1st `  (
g `  n )
) )
6564eqeq1d 2186 . . . . . . . . . . . . 13  |-  ( w  =  n  ->  (
( 1st `  (
g `  w )
)  =  (/)  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
6665ifbid 3555 . . . . . . . . . . . 12  |-  ( w  =  n  ->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
67 eqcom 2179 . . . . . . . . . . . 12  |-  ( w  =  n  <->  n  =  w )
68 eqcom 2179 . . . . . . . . . . . 12  |-  ( if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
6966, 67, 683imtr3i 200 . . . . . . . . . . 11  |-  ( n  =  w  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7069cbvmptv 4096 . . . . . . . . . 10  |-  ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7170feq1i 5354 . . . . . . . . 9  |-  ( ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o  <->  ( w  e.  om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7263, 71sylib 122 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
73 2onn 6516 . . . . . . . . . 10  |-  2o  e.  om
7473elexi 2749 . . . . . . . . 9  |-  2o  e.  _V
7574, 2elmap 6671 . . . . . . . 8  |-  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) 
<->  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7672, 75sylibr 134 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
7737, 42, 76rspcdva 2846 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
78 eqid 2177 . . . . . . . . . . . . 13  |-  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7978, 66, 50, 62fvmptd3 5605 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
8079eqeq1d 2186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o ) )
8151adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
82 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o )
8382eqcomd 2183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  1o  =  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) ) )
84 eqifdc 3568 . . . . . . . . . . . . . . . . . . 19  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  ->  ( 1o  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
86 eqid 2177 . . . . . . . . . . . . . . . . . . 19  |-  1o  =  1o
87 orcom 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
8855intnan 929 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )
89 biorf 744 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( -.  ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  (/) )  -> 
( ( ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  1o )  <-> 
( ( -.  ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  (/) )  \/  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) ) ) )
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
9187, 90bitr4i 187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) )
9286, 91mpbiran2 941 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( 1st `  ( g `  n
) )  =  (/) )
9385, 92bitrdi 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9493adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9583, 94mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1st `  ( g `  n ) )  =  (/) )
96 eldju2ndl 7065 . . . . . . . . . . . . . . 15  |-  ( ( ( g `  n
)  e.  ( { z  e.  om  | 
y  =  { (/) } } 1o )  /\  ( 1st `  ( g `  n ) )  =  (/) )  ->  ( 2nd `  ( g `  n
) )  e.  {
z  e.  om  | 
y  =  { (/) } } )
9781, 95, 96syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 2nd `  ( g `  n ) )  e. 
{ z  e.  om  |  y  =  { (/)
} } )
98 biidd 172 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 2nd `  (
g `  n )
)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
9998elrab 2893 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( g `
 n ) )  e.  { z  e. 
om  |  y  =  { (/) } }  <->  ( ( 2nd `  ( g `  n ) )  e. 
om  /\  y  =  { (/) } ) )
10097, 99sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
( 2nd `  (
g `  n )
)  e.  om  /\  y  =  { (/) } ) )
101100simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  y  =  { (/) } )
102101ex 115 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o 
->  y  =  { (/)
} ) )
10380, 102sylbid 150 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
104103rexlimdva 2594 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
105 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
106 biidd 172 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
107 peano1 4590 . . . . . . . . . . . . . . 15  |-  (/)  e.  om
108107a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  om )
109 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
110106, 108, 109elrabd 2895 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  { z  e. 
om  |  y  =  { (/) } } )
111 djulcl 7044 . . . . . . . . . . . . 13  |-  ( (/)  e.  { z  e.  om  |  y  =  { (/)
} }  ->  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
112110, 111syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
(inl `  (/) )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
113 foelrn 5748 . . . . . . . . . . . 12  |-  ( ( g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o )  /\  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
114105, 112, 113syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
11579adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
116 fveq2 5511 . . . . . . . . . . . . . . . 16  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (inl `  (/) ) )  =  ( 1st `  ( g `
 n ) ) )
117 1stinl 7067 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  om  ->  ( 1st `  (inl `  (/) ) )  =  (/) )
118107, 117ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  (inl `  (/) ) )  =  (/)
119116, 118eqtr3di 2225 . . . . . . . . . . . . . . 15  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (
g `  n )
)  =  (/) )
120119iftrued 3541 . . . . . . . . . . . . . 14  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  if ( ( 1st `  ( g `
 n ) )  =  (/) ,  1o ,  (/) )  =  1o )
121115, 120sylan9eq 2230 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  /\  y  =  { (/)
} )  /\  n  e.  om )  /\  (inl `  (/) )  =  (
g `  n )
)  ->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o )
122121ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( (inl `  (/) )  =  ( g `
 n )  -> 
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
123122reximdva 2579 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
( E. n  e. 
om  (inl `  (/) )  =  ( g `  n
)  ->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
124114, 123mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o )
125124ex 115 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
y  =  { (/) }  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
126104, 125impbid 129 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  y  =  { (/) } ) )
127126notbid 667 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  -.  y  =  { (/) } ) )
128127notbid 667 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o  <->  -. 
-.  y  =  { (/)
} ) )
12977, 128, 1263imtr3d 202 . . . . 5  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
130 df-stab 831 . . . . 5  |-  (STAB  y  =  { (/) }  <->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
131129, 130sylibr 134 . . . 4  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  -> STAB  y  =  { (/) } )
13231, 131exlimddv 1898 . . 3  |-  ( ph  -> STAB  y  =  { (/) } )
133132adantr 276 . 2  |-  ( (
ph  /\  y  C_  {
(/) } )  -> STAB  y  =  { (/) } )
134133exmid1stab 4205 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  STAB wstab 830  DECID wdc 834   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   _Vcvv 2737    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591    |-> cmpt 4061  EXMIDwem 4191    _I cid 4285   omcom 4586    |` cres 4625   -->wf 5208   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869   1stc1st 6133   2ndc2nd 6134   1oc1o 6404   2oc2o 6405    ^m cmap 6642   ⊔ cdju 7030  inlcinl 7038  Markovcmarkov 7143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-exmid 4192  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-1o 6411  df-2o 6412  df-map 6644  df-dju 7031  df-inl 7040  df-inr 7041  df-markov 7144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator