Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid Unicode version

Theorem subctctexmid 15645
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
subctctexmid.mk  |-  ( ph  ->  om  e. Markov )
Assertion
Ref Expression
subctctexmid  |-  ( ph  -> EXMID )
Distinct variable groups:    f, s, x    ph, g    x, g
Allowed substitution hints:    ph( x, f, s)

Proof of Theorem subctctexmid
Dummy variables  y  z  h  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
2 omex 4629 . . . . . . . 8  |-  om  e.  _V
32rabex 4177 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  e.  _V
43a1i 9 . . . . . 6  |-  ( ph  ->  { z  e.  om  |  y  =  { (/)
} }  e.  _V )
5 ssrab2 3268 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  C_ 
om
6 f1oi 5542 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }
7 f1ofo 5511 . . . . . . . . 9  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }  ->  (  _I  |`  { z  e. 
om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } )
86, 7ax-mp 5 . . . . . . . 8  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
9 resiexg 4991 . . . . . . . . . 10  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } )  e.  _V )
103, 9ax-mp 5 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } )  e. 
_V
11 foeq1 5476 . . . . . . . . 9  |-  ( f  =  (  _I  |`  { z  e.  om  |  y  =  { (/) } }
)  ->  ( f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }  <->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } ) )
1210, 11spcev 2859 . . . . . . . 8  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } }  ->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
138, 12ax-mp 5 . . . . . . 7  |-  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} }
145, 13pm3.2i 272 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
15 sseq1 3206 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( s  C_  om  <->  { z  e.  om  |  y  =  { (/) } }  C_  om ) )
16 foeq2 5477 . . . . . . . . 9  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> { z  e.  om  | 
y  =  { (/) } }  <->  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1716exbidv 1839 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} }  <->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1815, 17anbi12d 473 . . . . . . 7  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  <->  ( {
z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
1918spcegv 2852 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  ( ( { z  e. 
om  |  y  =  { (/) } }  C_  om 
/\  E. f  f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
)  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
204, 14, 19mpisyl 1457 . . . . 5  |-  ( ph  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
21 foeq3 5478 . . . . . . . . . 10  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> x  <-> 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
2221exbidv 1839 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> x  <->  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
2322anbi2d 464 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> x )  <->  ( s  C_ 
om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
2423exbidv 1839 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. s ( s 
C_  om  /\  E. f 
f : s -onto-> x )  <->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
25 djueq1 7106 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
26 foeq3 5478 . . . . . . . . 9  |-  ( ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o )  -> 
( g : om -onto->
( x 1o )  <->  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( g : om -onto-> (
x 1o )  <->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2827exbidv 1839 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. g  g : om -onto-> ( x 1o ) 
<->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2924, 28imbi12d 234 . . . . . 6  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( E. s ( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  <->  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) ) )
303, 29spcv 2858 . . . . 5  |-  ( A. x ( E. s
( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  -> 
( E. s ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
311, 20, 30sylc 62 . . . 4  |-  ( ph  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
32 fveq1 5557 . . . . . . . . . . . 12  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
h `  n )  =  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n ) )
3332eqeq1d 2205 . . . . . . . . . . 11  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( h `  n
)  =  1o  <->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3433rexbidv 2498 . . . . . . . . . 10  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( E. n  e.  om  ( h `  n
)  =  1o  <->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3534notbid 668 . . . . . . . . 9  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  E. n  e.  om  ( h `  n
)  =  1o  <->  -.  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3635notbid 668 . . . . . . . 8  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  -.  E. n  e. 
om  ( h `  n )  =  1o  <->  -. 
-.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
3736, 34imbi12d 234 . . . . . . 7  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o )  <->  ( -.  -.  E. n  e.  om  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) ) )
38 subctctexmid.mk . . . . . . . . 9  |-  ( ph  ->  om  e. Markov )
39 ismkvnex 7221 . . . . . . . . . 10  |-  ( om  e. Markov  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m 
om ) ( -. 
-.  E. n  e.  om  ( h `  n
)  =  1o  ->  E. n  e.  om  (
h `  n )  =  1o ) ) )
4038, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) ) )
4138, 40mpbid 147 . . . . . . . 8  |-  ( ph  ->  A. h  e.  ( 2o  ^m  om )
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
43 1lt2o 6500 . . . . . . . . . . . 12  |-  1o  e.  2o
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  ( 1st `  (
g `  n )
)  =  (/) )  ->  1o  e.  2o )
45 0lt2o 6499 . . . . . . . . . . . 12  |-  (/)  e.  2o
4645a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  -.  ( 1st `  (
g `  n )
)  =  (/) )  ->  (/) 
e.  2o )
47 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
48 fof 5480 . . . . . . . . . . . . . . 15  |-  ( g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
4947, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
50 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  n  e.  om )
5149, 50ffvelcdmd 5698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
52 eldju1st 7137 . . . . . . . . . . . . 13  |-  ( ( g `  n )  e.  ( { z  e.  om  |  y  =  { (/) } } 1o )  ->  ( ( 1st `  ( g `  n ) )  =  (/)  \/  ( 1st `  (
g `  n )
)  =  1o ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o ) )
54 1n0 6490 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
5554neii 2369 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
56 eqeq1 2203 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  (
( 1st `  (
g `  n )
)  =  (/)  <->  1o  =  (/) ) )
5755, 56mtbiri 676 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  -.  ( 1st `  ( g `
 n ) )  =  (/) )
5857orim2i 762 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
59 df-dc 836 . . . . . . . . . . . . 13  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  <->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
6058, 59sylibr 134 . . . . . . . . . . . 12  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6153, 60syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6244, 46, 61ifcldadc 3590 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  e.  2o )
6362fmpttd 5717 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
64 2fveq3 5563 . . . . . . . . . . . . . 14  |-  ( w  =  n  ->  ( 1st `  ( g `  w ) )  =  ( 1st `  (
g `  n )
) )
6564eqeq1d 2205 . . . . . . . . . . . . 13  |-  ( w  =  n  ->  (
( 1st `  (
g `  w )
)  =  (/)  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
6665ifbid 3582 . . . . . . . . . . . 12  |-  ( w  =  n  ->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
67 eqcom 2198 . . . . . . . . . . . 12  |-  ( w  =  n  <->  n  =  w )
68 eqcom 2198 . . . . . . . . . . . 12  |-  ( if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
6966, 67, 683imtr3i 200 . . . . . . . . . . 11  |-  ( n  =  w  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7069cbvmptv 4129 . . . . . . . . . 10  |-  ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7170feq1i 5400 . . . . . . . . 9  |-  ( ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o  <->  ( w  e.  om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7263, 71sylib 122 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
73 2onn 6579 . . . . . . . . . 10  |-  2o  e.  om
7473elexi 2775 . . . . . . . . 9  |-  2o  e.  _V
7574, 2elmap 6736 . . . . . . . 8  |-  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) 
<->  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7672, 75sylibr 134 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
7737, 42, 76rspcdva 2873 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
78 eqid 2196 . . . . . . . . . . . . 13  |-  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7978, 66, 50, 62fvmptd3 5655 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
8079eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o ) )
8151adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
82 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o )
8382eqcomd 2202 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  1o  =  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) ) )
84 eqifdc 3596 . . . . . . . . . . . . . . . . . . 19  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  ->  ( 1o  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
86 eqid 2196 . . . . . . . . . . . . . . . . . . 19  |-  1o  =  1o
87 orcom 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
8855intnan 930 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )
89 biorf 745 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( -.  ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  (/) )  -> 
( ( ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  1o )  <-> 
( ( -.  ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  (/) )  \/  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) ) ) )
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
9187, 90bitr4i 187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) )
9286, 91mpbiran2 943 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( 1st `  ( g `  n
) )  =  (/) )
9385, 92bitrdi 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9493adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9583, 94mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1st `  ( g `  n ) )  =  (/) )
96 eldju2ndl 7138 . . . . . . . . . . . . . . 15  |-  ( ( ( g `  n
)  e.  ( { z  e.  om  | 
y  =  { (/) } } 1o )  /\  ( 1st `  ( g `  n ) )  =  (/) )  ->  ( 2nd `  ( g `  n
) )  e.  {
z  e.  om  | 
y  =  { (/) } } )
9781, 95, 96syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 2nd `  ( g `  n ) )  e. 
{ z  e.  om  |  y  =  { (/)
} } )
98 biidd 172 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 2nd `  (
g `  n )
)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
9998elrab 2920 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( g `
 n ) )  e.  { z  e. 
om  |  y  =  { (/) } }  <->  ( ( 2nd `  ( g `  n ) )  e. 
om  /\  y  =  { (/) } ) )
10097, 99sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
( 2nd `  (
g `  n )
)  e.  om  /\  y  =  { (/) } ) )
101100simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  y  =  { (/) } )
102101ex 115 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o 
->  y  =  { (/)
} ) )
10380, 102sylbid 150 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
104103rexlimdva 2614 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
105 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
106 biidd 172 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
107 peano1 4630 . . . . . . . . . . . . . . 15  |-  (/)  e.  om
108107a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  om )
109 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
110106, 108, 109elrabd 2922 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  { z  e. 
om  |  y  =  { (/) } } )
111 djulcl 7117 . . . . . . . . . . . . 13  |-  ( (/)  e.  { z  e.  om  |  y  =  { (/)
} }  ->  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
112110, 111syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
(inl `  (/) )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
113 foelrn 5799 . . . . . . . . . . . 12  |-  ( ( g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o )  /\  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
114105, 112, 113syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
11579adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
116 fveq2 5558 . . . . . . . . . . . . . . . 16  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (inl `  (/) ) )  =  ( 1st `  ( g `
 n ) ) )
117 1stinl 7140 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  om  ->  ( 1st `  (inl `  (/) ) )  =  (/) )
118107, 117ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  (inl `  (/) ) )  =  (/)
119116, 118eqtr3di 2244 . . . . . . . . . . . . . . 15  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (
g `  n )
)  =  (/) )
120119iftrued 3568 . . . . . . . . . . . . . 14  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  if ( ( 1st `  ( g `
 n ) )  =  (/) ,  1o ,  (/) )  =  1o )
121115, 120sylan9eq 2249 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  /\  y  =  { (/)
} )  /\  n  e.  om )  /\  (inl `  (/) )  =  (
g `  n )
)  ->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o )
122121ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( (inl `  (/) )  =  ( g `
 n )  -> 
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
123122reximdva 2599 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
( E. n  e. 
om  (inl `  (/) )  =  ( g `  n
)  ->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
124114, 123mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o )
125124ex 115 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
y  =  { (/) }  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
126104, 125impbid 129 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  y  =  { (/) } ) )
127126notbid 668 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  -.  y  =  { (/) } ) )
128127notbid 668 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o  <->  -. 
-.  y  =  { (/)
} ) )
12977, 128, 1263imtr3d 202 . . . . 5  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
130 df-stab 832 . . . . 5  |-  (STAB  y  =  { (/) }  <->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
131129, 130sylibr 134 . . . 4  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  -> STAB  y  =  { (/) } )
13231, 131exlimddv 1913 . . 3  |-  ( ph  -> STAB  y  =  { (/) } )
133132adantr 276 . 2  |-  ( (
ph  /\  y  C_  {
(/) } )  -> STAB  y  =  { (/) } )
134133exmid1stab 4241 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  STAB wstab 831  DECID wdc 835   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763    C_ wss 3157   (/)c0 3450   ifcif 3561   {csn 3622    |-> cmpt 4094  EXMIDwem 4227    _I cid 4323   omcom 4626    |` cres 4665   -->wf 5254   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   1oc1o 6467   2oc2o 6468    ^m cmap 6707   ⊔ cdju 7103  inlcinl 7111  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-exmid 4228  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-map 6709  df-dju 7104  df-inl 7113  df-inr 7114  df-markov 7218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator