Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconstALT Unicode version

Theorem dcapnconstALT 16142
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16141 by means of dceqnconst 16140. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dcapnconstALT  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconstALT
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tridceq 16136 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR  ( y  < 
z  \/  y  =  z  \/  z  < 
y )  ->  A. y  e.  RR  A. z  e.  RR DECID  y  =  z )
2 reap0 16138 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR  ( y  < 
z  \/  y  =  z  \/  z  < 
y )  <->  A. x  e.  RR DECID  x #  0 )
3 redc0 16137 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR DECID  y  =  z  <->  A. x  e.  RR DECID  x  =  0 )
41, 2, 33imtr3i 200 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR DECID  x  = 
0 )
5 dceqnconst 16140 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
64, 5syl 14 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    \/ w3o 980    /\ w3a 981    = wceq 1373   E.wex 1516    =/= wne 2377   A.wral 2485   class class class wbr 4051   -->wf 5276   ` cfv 5280   RRcr 7944   0cc0 7945    < clt 8127   # cap 8674   ZZcz 9392   RR+crp 9795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-inn 9057  df-z 9393  df-rp 9796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator