Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconstALT Unicode version

Theorem dcapnconstALT 16389
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16388 by means of dceqnconst 16387. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dcapnconstALT  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconstALT
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tridceq 16383 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR  ( y  < 
z  \/  y  =  z  \/  z  < 
y )  ->  A. y  e.  RR  A. z  e.  RR DECID  y  =  z )
2 reap0 16385 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR  ( y  < 
z  \/  y  =  z  \/  z  < 
y )  <->  A. x  e.  RR DECID  x #  0 )
3 redc0 16384 . . 3  |-  ( A. y  e.  RR  A. z  e.  RR DECID  y  =  z  <->  A. x  e.  RR DECID  x  =  0 )
41, 2, 33imtr3i 200 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR DECID  x  = 
0 )
5 dceqnconst 16387 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
64, 5syl 14 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 839    \/ w3o 1001    /\ w3a 1002    = wceq 1395   E.wex 1538    =/= wne 2400   A.wral 2508   class class class wbr 4082   -->wf 5313   ` cfv 5317   RRcr 7994   0cc0 7995    < clt 8177   # cap 8724   ZZcz 9442   RR+crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-z 9443  df-rp 9846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator