ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid3g Unicode version

Theorem tpid3g 3758
Description: Closed theorem form of tpid3 3759. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tpid3g  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )

Proof of Theorem tpid3g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elisset 2791 . 2  |-  ( A  e.  B  ->  E. x  x  =  A )
2 3mix3 1171 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  C  \/  x  =  D  \/  x  =  A )
)
32a1i 9 . . . . . 6  |-  ( A  e.  B  ->  (
x  =  A  -> 
( x  =  C  \/  x  =  D  \/  x  =  A ) ) )
4 abid 2195 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }  <->  ( x  =  C  \/  x  =  D  \/  x  =  A ) )
53, 4imbitrrdi 162 . . . . 5  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } ) )
6 dftp2 3692 . . . . . 6  |-  { C ,  D ,  A }  =  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }
76eleq2i 2274 . . . . 5  |-  ( x  e.  { C ,  D ,  A }  <->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } )
85, 7imbitrrdi 162 . . . 4  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  { C ,  D ,  A }
) )
9 eleq1 2270 . . . 4  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  <->  A  e.  { C ,  D ,  A }
) )
108, 9mpbidi 151 . . 3  |-  ( A  e.  B  ->  (
x  =  A  ->  A  e.  { C ,  D ,  A }
) )
1110exlimdv 1843 . 2  |-  ( A  e.  B  ->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } ) )
121, 11mpd 13 1  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 980    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   {ctp 3645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-tp 3651
This theorem is referenced by:  rngmulrg  13085  srngmulrd  13096  lmodscad  13114  ipsmulrd  13126  ipsipd  13129  topgrptsetd  13146
  Copyright terms: Public domain W3C validator