| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid3g | Unicode version | ||
| Description: Closed theorem form of tpid3 3783. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| tpid3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2814 |
. 2
| |
| 2 | 3mix3 1192 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | abid 2217 |
. . . . . 6
| |
| 5 | 3, 4 | imbitrrdi 162 |
. . . . 5
|
| 6 | dftp2 3715 |
. . . . . 6
| |
| 7 | 6 | eleq2i 2296 |
. . . . 5
|
| 8 | 5, 7 | imbitrrdi 162 |
. . . 4
|
| 9 | eleq1 2292 |
. . . 4
| |
| 10 | 8, 9 | mpbidi 151 |
. . 3
|
| 11 | 10 | exlimdv 1865 |
. 2
|
| 12 | 1, 11 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: rngmulrg 13171 srngmulrd 13182 lmodscad 13200 ipsmulrd 13212 ipsipd 13215 topgrptsetd 13232 |
| Copyright terms: Public domain | W3C validator |