ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfiv01gt1 Unicode version

Theorem hashfiv01gt1 10730
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashfiv01gt1  |-  ( M  e.  Fin  ->  (
( `  M )  =  0  \/  ( `  M
)  =  1  \/  1  <  ( `  M
) ) )

Proof of Theorem hashfiv01gt1
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( M  e.  Fin  /\  ( `  M )  <  0 )  ->  ( `  M )  <  0
)
2 hashcl 10729 . . . . 5  |-  ( M  e.  Fin  ->  ( `  M )  e.  NN0 )
3 nn0nlt0 9175 . . . . 5  |-  ( ( `  M )  e.  NN0  ->  -.  ( `  M
)  <  0 )
42, 3syl 14 . . . 4  |-  ( M  e.  Fin  ->  -.  ( `  M )  <  0 )
54adantr 276 . . 3  |-  ( ( M  e.  Fin  /\  ( `  M )  <  0 )  ->  -.  ( `  M )  <  0 )
61, 5pm2.21dd 620 . 2  |-  ( ( M  e.  Fin  /\  ( `  M )  <  0 )  ->  (
( `  M )  =  0  \/  ( `  M
)  =  1  \/  1  <  ( `  M
) ) )
7 orc 712 . . . 4  |-  ( ( ( `  M )  =  0  \/  ( `  M )  =  1 )  ->  ( (
( `  M )  =  0  \/  ( `  M
)  =  1 )  \/  1  <  ( `  M ) ) )
8 fz01or 10081 . . . 4  |-  ( ( `  M )  e.  ( 0 ... 1 )  <-> 
( ( `  M
)  =  0  \/  ( `  M )  =  1 ) )
9 df-3or 979 . . . 4  |-  ( ( ( `  M )  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M ) )  <->  ( (
( `  M )  =  0  \/  ( `  M
)  =  1 )  \/  1  <  ( `  M ) ) )
107, 8, 93imtr4i 201 . . 3  |-  ( ( `  M )  e.  ( 0 ... 1 )  ->  ( ( `  M
)  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M )
) )
1110adantl 277 . 2  |-  ( ( M  e.  Fin  /\  ( `  M )  e.  ( 0 ... 1
) )  ->  (
( `  M )  =  0  \/  ( `  M
)  =  1  \/  1  <  ( `  M
) ) )
12 3mix3 1168 . . 3  |-  ( 1  <  ( `  M )  ->  ( ( `  M
)  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M )
) )
1312adantl 277 . 2  |-  ( ( M  e.  Fin  /\  1  <  ( `  M )
)  ->  ( ( `  M )  =  0  \/  ( `  M
)  =  1  \/  1  <  ( `  M
) ) )
142nn0zd 9346 . . 3  |-  ( M  e.  Fin  ->  ( `  M )  e.  ZZ )
15 0zd 9238 . . 3  |-  ( M  e.  Fin  ->  0  e.  ZZ )
16 1zzd 9253 . . 3  |-  ( M  e.  Fin  ->  1  e.  ZZ )
17 fztri3or 10009 . . 3  |-  ( ( ( `  M )  e.  ZZ  /\  0  e.  ZZ  /\  1  e.  ZZ )  ->  (
( `  M )  <  0  \/  ( `  M
)  e.  ( 0 ... 1 )  \/  1  <  ( `  M
) ) )
1814, 15, 16, 17syl3anc 1238 . 2  |-  ( M  e.  Fin  ->  (
( `  M )  <  0  \/  ( `  M
)  e.  ( 0 ... 1 )  \/  1  <  ( `  M
) ) )
196, 11, 13, 18mpjao3dan 1307 1  |-  ( M  e.  Fin  ->  (
( `  M )  =  0  \/  ( `  M
)  =  1  \/  1  <  ( `  M
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2146   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   Fincfn 6730   0cc0 7786   1c1 7787    < clt 7966   NN0cn0 9149   ZZcz 9226   ...cfz 9979  ♯chash 10723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980  df-ihash 10724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator