| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnxr | Unicode version | ||
| Description: The rational numbers are
dense in |
| Ref | Expression |
|---|---|
| qbtwnxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9898 |
. . 3
| |
| 2 | elxr 9898 |
. . . . 5
| |
| 3 | qbtwnre 10399 |
. . . . . . 7
| |
| 4 | 3 | 3expia 1208 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . 9
| |
| 6 | peano2re 8208 |
. . . . . . . . . 10
| |
| 7 | 6 | adantr 276 |
. . . . . . . . 9
|
| 8 | ltp1 8917 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | qbtwnre 10399 |
. . . . . . . . 9
| |
| 11 | 5, 7, 9, 10 | syl3anc 1250 |
. . . . . . . 8
|
| 12 | qre 9746 |
. . . . . . . . . . . . . 14
| |
| 13 | ltpnf 9902 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantl 277 |
. . . . . . . . . . . 12
|
| 16 | simplr 528 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | breqtrrd 4072 |
. . . . . . . . . . 11
|
| 18 | 17 | a1d 22 |
. . . . . . . . . 10
|
| 19 | 18 | anim2d 337 |
. . . . . . . . 9
|
| 20 | 19 | reximdva 2608 |
. . . . . . . 8
|
| 21 | 11, 20 | mpd 13 |
. . . . . . 7
|
| 22 | 21 | a1d 22 |
. . . . . 6
|
| 23 | rexr 8118 |
. . . . . . 7
| |
| 24 | breq2 4048 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | nltmnf 9910 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 27 | pm2.21d 620 |
. . . . . . . 8
|
| 29 | 25, 28 | sylbid 150 |
. . . . . . 7
|
| 30 | 23, 29 | sylan 283 |
. . . . . 6
|
| 31 | 4, 22, 30 | 3jaodan 1319 |
. . . . 5
|
| 32 | 2, 31 | sylan2b 287 |
. . . 4
|
| 33 | breq1 4047 |
. . . . . 6
| |
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | pnfnlt 9909 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 36 | pm2.21d 620 |
. . . . 5
|
| 38 | 34, 37 | sylbid 150 |
. . . 4
|
| 39 | peano2rem 8339 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | ltm1 8919 |
. . . . . . . . . 10
| |
| 43 | 42 | adantl 277 |
. . . . . . . . 9
|
| 44 | qbtwnre 10399 |
. . . . . . . . 9
| |
| 45 | 40, 41, 43, 44 | syl3anc 1250 |
. . . . . . . 8
|
| 46 | simpll 527 |
. . . . . . . . . . . 12
| |
| 47 | 12 | adantl 277 |
. . . . . . . . . . . . 13
|
| 48 | mnflt 9905 |
. . . . . . . . . . . . 13
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
|
| 50 | 46, 49 | eqbrtrd 4066 |
. . . . . . . . . . 11
|
| 51 | 50 | a1d 22 |
. . . . . . . . . 10
|
| 52 | 51 | anim1d 336 |
. . . . . . . . 9
|
| 53 | 52 | reximdva 2608 |
. . . . . . . 8
|
| 54 | 45, 53 | mpd 13 |
. . . . . . 7
|
| 55 | 54 | a1d 22 |
. . . . . 6
|
| 56 | 1re 8071 |
. . . . . . . . . 10
| |
| 57 | mnflt 9905 |
. . . . . . . . . 10
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
|
| 59 | breq1 4047 |
. . . . . . . . 9
| |
| 60 | 58, 59 | mpbiri 168 |
. . . . . . . 8
|
| 61 | ltpnf 9902 |
. . . . . . . . . 10
| |
| 62 | 56, 61 | ax-mp 5 |
. . . . . . . . 9
|
| 63 | breq2 4048 |
. . . . . . . . 9
| |
| 64 | 62, 63 | mpbiri 168 |
. . . . . . . 8
|
| 65 | 1z 9398 |
. . . . . . . . . 10
| |
| 66 | zq 9747 |
. . . . . . . . . 10
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . . . . . 9
|
| 68 | breq2 4048 |
. . . . . . . . . . 11
| |
| 69 | breq1 4047 |
. . . . . . . . . . 11
| |
| 70 | 68, 69 | anbi12d 473 |
. . . . . . . . . 10
|
| 71 | 70 | rspcev 2877 |
. . . . . . . . 9
|
| 72 | 67, 71 | mpan 424 |
. . . . . . . 8
|
| 73 | 60, 64, 72 | syl2an 289 |
. . . . . . 7
|
| 74 | 73 | a1d 22 |
. . . . . 6
|
| 75 | 3mix3 1171 |
. . . . . . . 8
| |
| 76 | 75, 1 | sylibr 134 |
. . . . . . 7
|
| 77 | 76, 29 | sylan 283 |
. . . . . 6
|
| 78 | 55, 74, 77 | 3jaodan 1319 |
. . . . 5
|
| 79 | 2, 78 | sylan2b 287 |
. . . 4
|
| 80 | 32, 38, 79 | 3jaoian 1318 |
. . 3
|
| 81 | 1, 80 | sylanb 284 |
. 2
|
| 82 | 81 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 |
| This theorem is referenced by: ioo0 10402 ioom 10403 ico0 10404 ioc0 10405 blssps 14899 blss 14900 tgqioo 15027 |
| Copyright terms: Public domain | W3C validator |