| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnxr | Unicode version | ||
| Description: The rational numbers are
dense in |
| Ref | Expression |
|---|---|
| qbtwnxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9897 |
. . 3
| |
| 2 | elxr 9897 |
. . . . 5
| |
| 3 | qbtwnre 10397 |
. . . . . . 7
| |
| 4 | 3 | 3expia 1207 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . 9
| |
| 6 | peano2re 8207 |
. . . . . . . . . 10
| |
| 7 | 6 | adantr 276 |
. . . . . . . . 9
|
| 8 | ltp1 8916 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | qbtwnre 10397 |
. . . . . . . . 9
| |
| 11 | 5, 7, 9, 10 | syl3anc 1249 |
. . . . . . . 8
|
| 12 | qre 9745 |
. . . . . . . . . . . . . 14
| |
| 13 | ltpnf 9901 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantl 277 |
. . . . . . . . . . . 12
|
| 16 | simplr 528 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | breqtrrd 4071 |
. . . . . . . . . . 11
|
| 18 | 17 | a1d 22 |
. . . . . . . . . 10
|
| 19 | 18 | anim2d 337 |
. . . . . . . . 9
|
| 20 | 19 | reximdva 2607 |
. . . . . . . 8
|
| 21 | 11, 20 | mpd 13 |
. . . . . . 7
|
| 22 | 21 | a1d 22 |
. . . . . 6
|
| 23 | rexr 8117 |
. . . . . . 7
| |
| 24 | breq2 4047 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | nltmnf 9909 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 27 | pm2.21d 620 |
. . . . . . . 8
|
| 29 | 25, 28 | sylbid 150 |
. . . . . . 7
|
| 30 | 23, 29 | sylan 283 |
. . . . . 6
|
| 31 | 4, 22, 30 | 3jaodan 1318 |
. . . . 5
|
| 32 | 2, 31 | sylan2b 287 |
. . . 4
|
| 33 | breq1 4046 |
. . . . . 6
| |
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | pnfnlt 9908 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 36 | pm2.21d 620 |
. . . . 5
|
| 38 | 34, 37 | sylbid 150 |
. . . 4
|
| 39 | peano2rem 8338 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | ltm1 8918 |
. . . . . . . . . 10
| |
| 43 | 42 | adantl 277 |
. . . . . . . . 9
|
| 44 | qbtwnre 10397 |
. . . . . . . . 9
| |
| 45 | 40, 41, 43, 44 | syl3anc 1249 |
. . . . . . . 8
|
| 46 | simpll 527 |
. . . . . . . . . . . 12
| |
| 47 | 12 | adantl 277 |
. . . . . . . . . . . . 13
|
| 48 | mnflt 9904 |
. . . . . . . . . . . . 13
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
|
| 50 | 46, 49 | eqbrtrd 4065 |
. . . . . . . . . . 11
|
| 51 | 50 | a1d 22 |
. . . . . . . . . 10
|
| 52 | 51 | anim1d 336 |
. . . . . . . . 9
|
| 53 | 52 | reximdva 2607 |
. . . . . . . 8
|
| 54 | 45, 53 | mpd 13 |
. . . . . . 7
|
| 55 | 54 | a1d 22 |
. . . . . 6
|
| 56 | 1re 8070 |
. . . . . . . . . 10
| |
| 57 | mnflt 9904 |
. . . . . . . . . 10
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
|
| 59 | breq1 4046 |
. . . . . . . . 9
| |
| 60 | 58, 59 | mpbiri 168 |
. . . . . . . 8
|
| 61 | ltpnf 9901 |
. . . . . . . . . 10
| |
| 62 | 56, 61 | ax-mp 5 |
. . . . . . . . 9
|
| 63 | breq2 4047 |
. . . . . . . . 9
| |
| 64 | 62, 63 | mpbiri 168 |
. . . . . . . 8
|
| 65 | 1z 9397 |
. . . . . . . . . 10
| |
| 66 | zq 9746 |
. . . . . . . . . 10
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . . . . . 9
|
| 68 | breq2 4047 |
. . . . . . . . . . 11
| |
| 69 | breq1 4046 |
. . . . . . . . . . 11
| |
| 70 | 68, 69 | anbi12d 473 |
. . . . . . . . . 10
|
| 71 | 70 | rspcev 2876 |
. . . . . . . . 9
|
| 72 | 67, 71 | mpan 424 |
. . . . . . . 8
|
| 73 | 60, 64, 72 | syl2an 289 |
. . . . . . 7
|
| 74 | 73 | a1d 22 |
. . . . . 6
|
| 75 | 3mix3 1170 |
. . . . . . . 8
| |
| 76 | 75, 1 | sylibr 134 |
. . . . . . 7
|
| 77 | 76, 29 | sylan 283 |
. . . . . 6
|
| 78 | 55, 74, 77 | 3jaodan 1318 |
. . . . 5
|
| 79 | 2, 78 | sylan2b 287 |
. . . 4
|
| 80 | 32, 38, 79 | 3jaoian 1317 |
. . 3
|
| 81 | 1, 80 | sylanb 284 |
. 2
|
| 82 | 81 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 |
| This theorem is referenced by: ioo0 10400 ioom 10401 ico0 10402 ioc0 10403 blssps 14870 blss 14871 tgqioo 14998 |
| Copyright terms: Public domain | W3C validator |