ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr Unicode version

Theorem qbtwnxr 10183
Description: The rational numbers are dense in  RR*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9703 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9703 . . . . 5  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 qbtwnre 10182 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
433expia 1194 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
5 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  e.  RR )
6 peano2re 8025 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
76adantr 274 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  +  1 )  e.  RR )
8 ltp1 8730 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
98adantr 274 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  <  ( A  +  1 ) )
10 qbtwnre 10182 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( A  +  1
)  e.  RR  /\  A  <  ( A  + 
1 ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
115, 7, 9, 10syl3anc 1227 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
12 qre 9554 . . . . . . . . . . . . . 14  |-  ( x  e.  QQ  ->  x  e.  RR )
13 ltpnf 9707 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  < +oo )
1412, 13syl 14 . . . . . . . . . . . . 13  |-  ( x  e.  QQ  ->  x  < +oo )
1514adantl 275 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  < +oo )
16 simplr 520 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  B  = +oo )
1715, 16breqtrrd 4004 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  <  B
)
1817a1d 22 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( x  < 
( A  +  1 )  ->  x  <  B ) )
1918anim2d 335 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( ( A  <  x  /\  x  <  ( A  +  1 ) )  ->  ( A  <  x  /\  x  <  B ) ) )
2019reximdva 2566 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( E. x  e.  QQ  ( A  < 
x  /\  x  <  ( A  +  1 ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2111, 20mpd 13 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
2221a1d 22 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
23 rexr 7935 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  RR* )
24 breq2 3980 . . . . . . . . 9  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2524adantl 275 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
26 nltmnf 9715 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2726adantr 274 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  -.  A  < -oo )
2827pm2.21d 609 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  < -oo  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2925, 28sylbid 149 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
3023, 29sylan 281 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
314, 22, 303jaodan 1295 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
322, 31sylan2b 285 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
33 breq1 3979 . . . . . 6  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
3433adantr 274 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
35 pnfnlt 9714 . . . . . . 7  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3635adantl 275 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3736pm2.21d 609 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
3834, 37sylbid 149 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
39 peano2rem 8156 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
4039adantl 275 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  e.  RR )
41 simpr 109 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  B  e.  RR )
42 ltm1 8732 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  <  B )
4342adantl 275 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  <  B )
44 qbtwnre 10182 . . . . . . . . 9  |-  ( ( ( B  -  1 )  e.  RR  /\  B  e.  RR  /\  ( B  -  1 )  <  B )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
4540, 41, 43, 44syl3anc 1227 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
46 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  = -oo )
4712adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  x  e.  RR )
48 mnflt 9710 . . . . . . . . . . . . 13  |-  ( x  e.  RR  -> -oo  <  x )
4947, 48syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  -> -oo  <  x )
5046, 49eqbrtrd 3998 . . . . . . . . . . 11  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  <  x
)
5150a1d 22 . . . . . . . . . 10  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( B  -  1 )  < 
x  ->  A  <  x ) )
5251anim1d 334 . . . . . . . . 9  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( ( B  -  1 )  <  x  /\  x  <  B )  ->  ( A  <  x  /\  x  <  B ) ) )
5352reximdva 2566 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( E. x  e.  QQ  ( ( B  -  1 )  < 
x  /\  x  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
5445, 53mpd 13 . . . . . . 7  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
5554a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
56 1re 7889 . . . . . . . . . 10  |-  1  e.  RR
57 mnflt 9710 . . . . . . . . . 10  |-  ( 1  e.  RR  -> -oo  <  1 )
5856, 57ax-mp 5 . . . . . . . . 9  |- -oo  <  1
59 breq1 3979 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  <  1  <-> -oo  <  1
) )
6058, 59mpbiri 167 . . . . . . . 8  |-  ( A  = -oo  ->  A  <  1 )
61 ltpnf 9707 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  1  < +oo )
6256, 61ax-mp 5 . . . . . . . . 9  |-  1  < +oo
63 breq2 3980 . . . . . . . . 9  |-  ( B  = +oo  ->  (
1  <  B  <->  1  < +oo ) )
6462, 63mpbiri 167 . . . . . . . 8  |-  ( B  = +oo  ->  1  <  B )
65 1z 9208 . . . . . . . . . 10  |-  1  e.  ZZ
66 zq 9555 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6765, 66ax-mp 5 . . . . . . . . 9  |-  1  e.  QQ
68 breq2 3980 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( A  <  x  <->  A  <  1 ) )
69 breq1 3979 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  <  B  <->  1  <  B ) )
7068, 69anbi12d 465 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  1  /\  1  <  B ) ) )
7170rspcev 2825 . . . . . . . . 9  |-  ( ( 1  e.  QQ  /\  ( A  <  1  /\  1  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
7267, 71mpan 421 . . . . . . . 8  |-  ( ( A  <  1  /\  1  <  B )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7360, 64, 72syl2an 287 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7473a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
75 3mix3 1157 . . . . . . . 8  |-  ( A  = -oo  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675, 1sylibr 133 . . . . . . 7  |-  ( A  = -oo  ->  A  e.  RR* )
7776, 29sylan 281 . . . . . 6  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
7855, 74, 773jaodan 1295 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
792, 78sylan2b 285 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
8032, 38, 793jaoian 1294 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A  < 
B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
811, 80sylanb 282 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
82813impia 1189 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 966    /\ w3a 967    = wceq 1342    e. wcel 2135   E.wrex 2443   class class class wbr 3976  (class class class)co 5836   RRcr 7743   1c1 7745    + caddc 7747   +oocpnf 7921   -oocmnf 7922   RR*cxr 7923    < clt 7924    - cmin 8060   ZZcz 9182   QQcq 9548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581
This theorem is referenced by:  ioo0  10185  ioom  10186  ico0  10187  ioc0  10188  blssps  12968  blss  12969  tgqioo  13088
  Copyright terms: Public domain W3C validator