| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnxr | Unicode version | ||
| Description: The rational numbers are
dense in |
| Ref | Expression |
|---|---|
| qbtwnxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9968 |
. . 3
| |
| 2 | elxr 9968 |
. . . . 5
| |
| 3 | qbtwnre 10471 |
. . . . . . 7
| |
| 4 | 3 | 3expia 1229 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . 9
| |
| 6 | peano2re 8278 |
. . . . . . . . . 10
| |
| 7 | 6 | adantr 276 |
. . . . . . . . 9
|
| 8 | ltp1 8987 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | qbtwnre 10471 |
. . . . . . . . 9
| |
| 11 | 5, 7, 9, 10 | syl3anc 1271 |
. . . . . . . 8
|
| 12 | qre 9816 |
. . . . . . . . . . . . . 14
| |
| 13 | ltpnf 9972 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantl 277 |
. . . . . . . . . . . 12
|
| 16 | simplr 528 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | breqtrrd 4110 |
. . . . . . . . . . 11
|
| 18 | 17 | a1d 22 |
. . . . . . . . . 10
|
| 19 | 18 | anim2d 337 |
. . . . . . . . 9
|
| 20 | 19 | reximdva 2632 |
. . . . . . . 8
|
| 21 | 11, 20 | mpd 13 |
. . . . . . 7
|
| 22 | 21 | a1d 22 |
. . . . . 6
|
| 23 | rexr 8188 |
. . . . . . 7
| |
| 24 | breq2 4086 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | nltmnf 9980 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 27 | pm2.21d 622 |
. . . . . . . 8
|
| 29 | 25, 28 | sylbid 150 |
. . . . . . 7
|
| 30 | 23, 29 | sylan 283 |
. . . . . 6
|
| 31 | 4, 22, 30 | 3jaodan 1340 |
. . . . 5
|
| 32 | 2, 31 | sylan2b 287 |
. . . 4
|
| 33 | breq1 4085 |
. . . . . 6
| |
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | pnfnlt 9979 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 36 | pm2.21d 622 |
. . . . 5
|
| 38 | 34, 37 | sylbid 150 |
. . . 4
|
| 39 | peano2rem 8409 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | ltm1 8989 |
. . . . . . . . . 10
| |
| 43 | 42 | adantl 277 |
. . . . . . . . 9
|
| 44 | qbtwnre 10471 |
. . . . . . . . 9
| |
| 45 | 40, 41, 43, 44 | syl3anc 1271 |
. . . . . . . 8
|
| 46 | simpll 527 |
. . . . . . . . . . . 12
| |
| 47 | 12 | adantl 277 |
. . . . . . . . . . . . 13
|
| 48 | mnflt 9975 |
. . . . . . . . . . . . 13
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
|
| 50 | 46, 49 | eqbrtrd 4104 |
. . . . . . . . . . 11
|
| 51 | 50 | a1d 22 |
. . . . . . . . . 10
|
| 52 | 51 | anim1d 336 |
. . . . . . . . 9
|
| 53 | 52 | reximdva 2632 |
. . . . . . . 8
|
| 54 | 45, 53 | mpd 13 |
. . . . . . 7
|
| 55 | 54 | a1d 22 |
. . . . . 6
|
| 56 | 1re 8141 |
. . . . . . . . . 10
| |
| 57 | mnflt 9975 |
. . . . . . . . . 10
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
|
| 59 | breq1 4085 |
. . . . . . . . 9
| |
| 60 | 58, 59 | mpbiri 168 |
. . . . . . . 8
|
| 61 | ltpnf 9972 |
. . . . . . . . . 10
| |
| 62 | 56, 61 | ax-mp 5 |
. . . . . . . . 9
|
| 63 | breq2 4086 |
. . . . . . . . 9
| |
| 64 | 62, 63 | mpbiri 168 |
. . . . . . . 8
|
| 65 | 1z 9468 |
. . . . . . . . . 10
| |
| 66 | zq 9817 |
. . . . . . . . . 10
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . . . . . 9
|
| 68 | breq2 4086 |
. . . . . . . . . . 11
| |
| 69 | breq1 4085 |
. . . . . . . . . . 11
| |
| 70 | 68, 69 | anbi12d 473 |
. . . . . . . . . 10
|
| 71 | 70 | rspcev 2907 |
. . . . . . . . 9
|
| 72 | 67, 71 | mpan 424 |
. . . . . . . 8
|
| 73 | 60, 64, 72 | syl2an 289 |
. . . . . . 7
|
| 74 | 73 | a1d 22 |
. . . . . 6
|
| 75 | 3mix3 1192 |
. . . . . . . 8
| |
| 76 | 75, 1 | sylibr 134 |
. . . . . . 7
|
| 77 | 76, 29 | sylan 283 |
. . . . . 6
|
| 78 | 55, 74, 77 | 3jaodan 1340 |
. . . . 5
|
| 79 | 2, 78 | sylan2b 287 |
. . . 4
|
| 80 | 32, 38, 79 | 3jaoian 1339 |
. . 3
|
| 81 | 1, 80 | sylanb 284 |
. 2
|
| 82 | 81 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 |
| This theorem is referenced by: ioo0 10474 ioom 10475 ico0 10476 ioc0 10477 blssps 15095 blss 15096 tgqioo 15223 |
| Copyright terms: Public domain | W3C validator |