ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr Unicode version

Theorem qbtwnxr 10326
Description: The rational numbers are dense in  RR*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9842 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9842 . . . . 5  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 qbtwnre 10325 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
433expia 1207 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
5 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  e.  RR )
6 peano2re 8155 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
76adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  +  1 )  e.  RR )
8 ltp1 8863 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
98adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  <  ( A  +  1 ) )
10 qbtwnre 10325 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( A  +  1
)  e.  RR  /\  A  <  ( A  + 
1 ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
115, 7, 9, 10syl3anc 1249 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
12 qre 9690 . . . . . . . . . . . . . 14  |-  ( x  e.  QQ  ->  x  e.  RR )
13 ltpnf 9846 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  < +oo )
1412, 13syl 14 . . . . . . . . . . . . 13  |-  ( x  e.  QQ  ->  x  < +oo )
1514adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  < +oo )
16 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  B  = +oo )
1715, 16breqtrrd 4057 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  <  B
)
1817a1d 22 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( x  < 
( A  +  1 )  ->  x  <  B ) )
1918anim2d 337 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( ( A  <  x  /\  x  <  ( A  +  1 ) )  ->  ( A  <  x  /\  x  <  B ) ) )
2019reximdva 2596 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( E. x  e.  QQ  ( A  < 
x  /\  x  <  ( A  +  1 ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2111, 20mpd 13 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
2221a1d 22 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
23 rexr 8065 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  RR* )
24 breq2 4033 . . . . . . . . 9  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2524adantl 277 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
26 nltmnf 9854 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2726adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  -.  A  < -oo )
2827pm2.21d 620 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  < -oo  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2925, 28sylbid 150 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
3023, 29sylan 283 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
314, 22, 303jaodan 1317 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
322, 31sylan2b 287 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
33 breq1 4032 . . . . . 6  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
3433adantr 276 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
35 pnfnlt 9853 . . . . . . 7  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3635adantl 277 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3736pm2.21d 620 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
3834, 37sylbid 150 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
39 peano2rem 8286 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
4039adantl 277 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  e.  RR )
41 simpr 110 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  B  e.  RR )
42 ltm1 8865 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  <  B )
4342adantl 277 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  <  B )
44 qbtwnre 10325 . . . . . . . . 9  |-  ( ( ( B  -  1 )  e.  RR  /\  B  e.  RR  /\  ( B  -  1 )  <  B )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
4540, 41, 43, 44syl3anc 1249 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
46 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  = -oo )
4712adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  x  e.  RR )
48 mnflt 9849 . . . . . . . . . . . . 13  |-  ( x  e.  RR  -> -oo  <  x )
4947, 48syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  -> -oo  <  x )
5046, 49eqbrtrd 4051 . . . . . . . . . . 11  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  <  x
)
5150a1d 22 . . . . . . . . . 10  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( B  -  1 )  < 
x  ->  A  <  x ) )
5251anim1d 336 . . . . . . . . 9  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( ( B  -  1 )  <  x  /\  x  <  B )  ->  ( A  <  x  /\  x  <  B ) ) )
5352reximdva 2596 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( E. x  e.  QQ  ( ( B  -  1 )  < 
x  /\  x  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
5445, 53mpd 13 . . . . . . 7  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
5554a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
56 1re 8018 . . . . . . . . . 10  |-  1  e.  RR
57 mnflt 9849 . . . . . . . . . 10  |-  ( 1  e.  RR  -> -oo  <  1 )
5856, 57ax-mp 5 . . . . . . . . 9  |- -oo  <  1
59 breq1 4032 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  <  1  <-> -oo  <  1
) )
6058, 59mpbiri 168 . . . . . . . 8  |-  ( A  = -oo  ->  A  <  1 )
61 ltpnf 9846 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  1  < +oo )
6256, 61ax-mp 5 . . . . . . . . 9  |-  1  < +oo
63 breq2 4033 . . . . . . . . 9  |-  ( B  = +oo  ->  (
1  <  B  <->  1  < +oo ) )
6462, 63mpbiri 168 . . . . . . . 8  |-  ( B  = +oo  ->  1  <  B )
65 1z 9343 . . . . . . . . . 10  |-  1  e.  ZZ
66 zq 9691 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6765, 66ax-mp 5 . . . . . . . . 9  |-  1  e.  QQ
68 breq2 4033 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( A  <  x  <->  A  <  1 ) )
69 breq1 4032 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  <  B  <->  1  <  B ) )
7068, 69anbi12d 473 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  1  /\  1  <  B ) ) )
7170rspcev 2864 . . . . . . . . 9  |-  ( ( 1  e.  QQ  /\  ( A  <  1  /\  1  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
7267, 71mpan 424 . . . . . . . 8  |-  ( ( A  <  1  /\  1  <  B )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7360, 64, 72syl2an 289 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7473a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
75 3mix3 1170 . . . . . . . 8  |-  ( A  = -oo  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675, 1sylibr 134 . . . . . . 7  |-  ( A  = -oo  ->  A  e.  RR* )
7776, 29sylan 283 . . . . . 6  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
7855, 74, 773jaodan 1317 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
792, 78sylan2b 287 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
8032, 38, 793jaoian 1316 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A  < 
B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
811, 80sylanb 284 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
82813impia 1202 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   RRcr 7871   1c1 7873    + caddc 7875   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053    < clt 8054    - cmin 8190   ZZcz 9317   QQcq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720
This theorem is referenced by:  ioo0  10328  ioom  10329  ico0  10330  ioc0  10331  blssps  14595  blss  14596  tgqioo  14715
  Copyright terms: Public domain W3C validator