ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr Unicode version

Theorem qbtwnxr 9818
Description: The rational numbers are dense in  RR*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9346 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9346 . . . . 5  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 qbtwnre 9817 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
433expia 1148 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
5 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  e.  RR )
6 peano2re 7715 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
76adantr 271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  +  1 )  e.  RR )
8 ltp1 8402 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
98adantr 271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  <  ( A  +  1 ) )
10 qbtwnre 9817 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( A  +  1
)  e.  RR  /\  A  <  ( A  + 
1 ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
115, 7, 9, 10syl3anc 1181 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  ( A  + 
1 ) ) )
12 qre 9209 . . . . . . . . . . . . . 14  |-  ( x  e.  QQ  ->  x  e.  RR )
13 ltpnf 9350 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  < +oo )
1412, 13syl 14 . . . . . . . . . . . . 13  |-  ( x  e.  QQ  ->  x  < +oo )
1514adantl 272 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  < +oo )
16 simplr 498 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  B  = +oo )
1715, 16breqtrrd 3893 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  x  <  B
)
1817a1d 22 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( x  < 
( A  +  1 )  ->  x  <  B ) )
1918anim2d 331 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  = +oo )  /\  x  e.  QQ )  ->  ( ( A  <  x  /\  x  <  ( A  +  1 ) )  ->  ( A  <  x  /\  x  <  B ) ) )
2019reximdva 2487 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( E. x  e.  QQ  ( A  < 
x  /\  x  <  ( A  +  1 ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2111, 20mpd 13 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
2221a1d 22 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
23 rexr 7630 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  RR* )
24 breq2 3871 . . . . . . . . 9  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2524adantl 272 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
26 nltmnf 9357 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2726adantr 271 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  -.  A  < -oo )
2827pm2.21d 587 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  < -oo  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
2925, 28sylbid 149 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
3023, 29sylan 278 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
314, 22, 303jaodan 1249 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
322, 31sylan2b 282 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
33 breq1 3870 . . . . . 6  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
3433adantr 271 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
35 pnfnlt 9356 . . . . . . 7  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3635adantl 272 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3736pm2.21d 587 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
3834, 37sylbid 149 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
39 peano2rem 7846 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
4039adantl 272 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  e.  RR )
41 simpr 109 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  B  e.  RR )
42 ltm1 8404 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  -  1 )  <  B )
4342adantl 272 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B  -  1 )  <  B )
44 qbtwnre 9817 . . . . . . . . 9  |-  ( ( ( B  -  1 )  e.  RR  /\  B  e.  RR  /\  ( B  -  1 )  <  B )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
4540, 41, 43, 44syl3anc 1181 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( ( B  - 
1 )  <  x  /\  x  <  B ) )
46 simpll 497 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  = -oo )
4712adantl 272 . . . . . . . . . . . . 13  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  x  e.  RR )
48 mnflt 9352 . . . . . . . . . . . . 13  |-  ( x  e.  RR  -> -oo  <  x )
4947, 48syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  -> -oo  <  x )
5046, 49eqbrtrd 3887 . . . . . . . . . . 11  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  A  <  x
)
5150a1d 22 . . . . . . . . . 10  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( B  -  1 )  < 
x  ->  A  <  x ) )
5251anim1d 330 . . . . . . . . 9  |-  ( ( ( A  = -oo  /\  B  e.  RR )  /\  x  e.  QQ )  ->  ( ( ( B  -  1 )  <  x  /\  x  <  B )  ->  ( A  <  x  /\  x  <  B ) ) )
5352reximdva 2487 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( E. x  e.  QQ  ( ( B  -  1 )  < 
x  /\  x  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
5445, 53mpd 13 . . . . . . 7  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
5554a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
56 1re 7584 . . . . . . . . . 10  |-  1  e.  RR
57 mnflt 9352 . . . . . . . . . 10  |-  ( 1  e.  RR  -> -oo  <  1 )
5856, 57ax-mp 7 . . . . . . . . 9  |- -oo  <  1
59 breq1 3870 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  <  1  <-> -oo  <  1
) )
6058, 59mpbiri 167 . . . . . . . 8  |-  ( A  = -oo  ->  A  <  1 )
61 ltpnf 9350 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  1  < +oo )
6256, 61ax-mp 7 . . . . . . . . 9  |-  1  < +oo
63 breq2 3871 . . . . . . . . 9  |-  ( B  = +oo  ->  (
1  <  B  <->  1  < +oo ) )
6462, 63mpbiri 167 . . . . . . . 8  |-  ( B  = +oo  ->  1  <  B )
65 1z 8874 . . . . . . . . . 10  |-  1  e.  ZZ
66 zq 9210 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6765, 66ax-mp 7 . . . . . . . . 9  |-  1  e.  QQ
68 breq2 3871 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( A  <  x  <->  A  <  1 ) )
69 breq1 3870 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  <  B  <->  1  <  B ) )
7068, 69anbi12d 458 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  1  /\  1  <  B ) ) )
7170rspcev 2736 . . . . . . . . 9  |-  ( ( 1  e.  QQ  /\  ( A  <  1  /\  1  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
7267, 71mpan 416 . . . . . . . 8  |-  ( ( A  <  1  /\  1  <  B )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7360, 64, 72syl2an 284 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = +oo )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
7473a1d 22 . . . . . 6  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
75 3mix3 1117 . . . . . . . 8  |-  ( A  = -oo  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675, 1sylibr 133 . . . . . . 7  |-  ( A  = -oo  ->  A  e.  RR* )
7776, 29sylan 278 . . . . . 6  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
7855, 74, 773jaodan 1249 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
792, 78sylan2b 282 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
8032, 38, 793jaoian 1248 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A  < 
B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
811, 80sylanb 279 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
82813impia 1143 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 926    /\ w3a 927    = wceq 1296    e. wcel 1445   E.wrex 2371   class class class wbr 3867  (class class class)co 5690   RRcr 7446   1c1 7448    + caddc 7450   +oocpnf 7616   -oocmnf 7617   RR*cxr 7618    < clt 7619    - cmin 7750   ZZcz 8848   QQcq 9203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234
This theorem is referenced by:  ioo0  9820  ioom  9821  ico0  9822  ioc0  9823  blssps  12213  blss  12214  tgqioo  12321
  Copyright terms: Public domain W3C validator