| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnxr | Unicode version | ||
| Description: The rational numbers are
dense in |
| Ref | Expression |
|---|---|
| qbtwnxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 |
. . 3
| |
| 2 | elxr 9868 |
. . . . 5
| |
| 3 | qbtwnre 10363 |
. . . . . . 7
| |
| 4 | 3 | 3expia 1207 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . 9
| |
| 6 | peano2re 8179 |
. . . . . . . . . 10
| |
| 7 | 6 | adantr 276 |
. . . . . . . . 9
|
| 8 | ltp1 8888 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
|
| 10 | qbtwnre 10363 |
. . . . . . . . 9
| |
| 11 | 5, 7, 9, 10 | syl3anc 1249 |
. . . . . . . 8
|
| 12 | qre 9716 |
. . . . . . . . . . . . . 14
| |
| 13 | ltpnf 9872 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantl 277 |
. . . . . . . . . . . 12
|
| 16 | simplr 528 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | breqtrrd 4062 |
. . . . . . . . . . 11
|
| 18 | 17 | a1d 22 |
. . . . . . . . . 10
|
| 19 | 18 | anim2d 337 |
. . . . . . . . 9
|
| 20 | 19 | reximdva 2599 |
. . . . . . . 8
|
| 21 | 11, 20 | mpd 13 |
. . . . . . 7
|
| 22 | 21 | a1d 22 |
. . . . . 6
|
| 23 | rexr 8089 |
. . . . . . 7
| |
| 24 | breq2 4038 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | nltmnf 9880 |
. . . . . . . . . 10
| |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 27 | pm2.21d 620 |
. . . . . . . 8
|
| 29 | 25, 28 | sylbid 150 |
. . . . . . 7
|
| 30 | 23, 29 | sylan 283 |
. . . . . 6
|
| 31 | 4, 22, 30 | 3jaodan 1317 |
. . . . 5
|
| 32 | 2, 31 | sylan2b 287 |
. . . 4
|
| 33 | breq1 4037 |
. . . . . 6
| |
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | pnfnlt 9879 |
. . . . . . 7
| |
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 36 | pm2.21d 620 |
. . . . 5
|
| 38 | 34, 37 | sylbid 150 |
. . . 4
|
| 39 | peano2rem 8310 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 277 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | ltm1 8890 |
. . . . . . . . . 10
| |
| 43 | 42 | adantl 277 |
. . . . . . . . 9
|
| 44 | qbtwnre 10363 |
. . . . . . . . 9
| |
| 45 | 40, 41, 43, 44 | syl3anc 1249 |
. . . . . . . 8
|
| 46 | simpll 527 |
. . . . . . . . . . . 12
| |
| 47 | 12 | adantl 277 |
. . . . . . . . . . . . 13
|
| 48 | mnflt 9875 |
. . . . . . . . . . . . 13
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
|
| 50 | 46, 49 | eqbrtrd 4056 |
. . . . . . . . . . 11
|
| 51 | 50 | a1d 22 |
. . . . . . . . . 10
|
| 52 | 51 | anim1d 336 |
. . . . . . . . 9
|
| 53 | 52 | reximdva 2599 |
. . . . . . . 8
|
| 54 | 45, 53 | mpd 13 |
. . . . . . 7
|
| 55 | 54 | a1d 22 |
. . . . . 6
|
| 56 | 1re 8042 |
. . . . . . . . . 10
| |
| 57 | mnflt 9875 |
. . . . . . . . . 10
| |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
|
| 59 | breq1 4037 |
. . . . . . . . 9
| |
| 60 | 58, 59 | mpbiri 168 |
. . . . . . . 8
|
| 61 | ltpnf 9872 |
. . . . . . . . . 10
| |
| 62 | 56, 61 | ax-mp 5 |
. . . . . . . . 9
|
| 63 | breq2 4038 |
. . . . . . . . 9
| |
| 64 | 62, 63 | mpbiri 168 |
. . . . . . . 8
|
| 65 | 1z 9369 |
. . . . . . . . . 10
| |
| 66 | zq 9717 |
. . . . . . . . . 10
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . . . . . 9
|
| 68 | breq2 4038 |
. . . . . . . . . . 11
| |
| 69 | breq1 4037 |
. . . . . . . . . . 11
| |
| 70 | 68, 69 | anbi12d 473 |
. . . . . . . . . 10
|
| 71 | 70 | rspcev 2868 |
. . . . . . . . 9
|
| 72 | 67, 71 | mpan 424 |
. . . . . . . 8
|
| 73 | 60, 64, 72 | syl2an 289 |
. . . . . . 7
|
| 74 | 73 | a1d 22 |
. . . . . 6
|
| 75 | 3mix3 1170 |
. . . . . . . 8
| |
| 76 | 75, 1 | sylibr 134 |
. . . . . . 7
|
| 77 | 76, 29 | sylan 283 |
. . . . . 6
|
| 78 | 55, 74, 77 | 3jaodan 1317 |
. . . . 5
|
| 79 | 2, 78 | sylan2b 287 |
. . . 4
|
| 80 | 32, 38, 79 | 3jaoian 1316 |
. . 3
|
| 81 | 1, 80 | sylanb 284 |
. 2
|
| 82 | 81 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 |
| This theorem is referenced by: ioo0 10366 ioom 10367 ico0 10368 ioc0 10369 blssps 14747 blss 14748 tgqioo 14875 |
| Copyright terms: Public domain | W3C validator |