ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvd Unicode version

Theorem nffvd 5330
Description: Deduction version of bound-variable hypothesis builder nffv 5328. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2  |-  ( ph  -> 
F/_ x F )
nffvd.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nffvd  |-  ( ph  -> 
F/_ x ( F `
 A ) )

Proof of Theorem nffvd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2235 . . 3  |-  F/_ x { z  |  A. x  z  e.  F }
2 nfaba1 2235 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
31, 2nffv 5328 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)
4 nffvd.2 . . 3  |-  ( ph  -> 
F/_ x F )
5 nffvd.3 . . 3  |-  ( ph  -> 
F/_ x A )
6 nfnfc1 2232 . . . . 5  |-  F/ x F/_ x F
7 nfnfc1 2232 . . . . 5  |-  F/ x F/_ x A
86, 7nfan 1503 . . . 4  |-  F/ x
( F/_ x F  /\  F/_ x A )
9 abidnf 2784 . . . . . 6  |-  ( F/_ x F  ->  { z  |  A. x  z  e.  F }  =  F )
109adantr 271 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  F }  =  F )
11 abidnf 2784 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
1211adantl 272 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  A }  =  A )
1310, 12fveq12d 5325 . . . 4  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)  =  ( F `
 A ) )
148, 13nfceqdf 2228 . . 3  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
154, 5, 14syl2anc 404 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
163, 15mpbii 147 1  |-  ( ph  -> 
F/_ x ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1288    = wceq 1290    e. wcel 1439   {cab 2075   F/_wnfc 2216   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036
This theorem is referenced by:  nfovd  5692  nfixpxy  6488
  Copyright terms: Public domain W3C validator