ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvd Unicode version

Theorem nffvd 5588
Description: Deduction version of bound-variable hypothesis builder nffv 5586. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2  |-  ( ph  -> 
F/_ x F )
nffvd.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nffvd  |-  ( ph  -> 
F/_ x ( F `
 A ) )

Proof of Theorem nffvd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2354 . . 3  |-  F/_ x { z  |  A. x  z  e.  F }
2 nfaba1 2354 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
31, 2nffv 5586 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)
4 nffvd.2 . . 3  |-  ( ph  -> 
F/_ x F )
5 nffvd.3 . . 3  |-  ( ph  -> 
F/_ x A )
6 nfnfc1 2351 . . . . 5  |-  F/ x F/_ x F
7 nfnfc1 2351 . . . . 5  |-  F/ x F/_ x A
86, 7nfan 1588 . . . 4  |-  F/ x
( F/_ x F  /\  F/_ x A )
9 abidnf 2941 . . . . . 6  |-  ( F/_ x F  ->  { z  |  A. x  z  e.  F }  =  F )
109adantr 276 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  F }  =  F )
11 abidnf 2941 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
1211adantl 277 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  A }  =  A )
1310, 12fveq12d 5583 . . . 4  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)  =  ( F `
 A ) )
148, 13nfceqdf 2347 . . 3  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
154, 5, 14syl2anc 411 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
163, 15mpbii 148 1  |-  ( ph  -> 
F/_ x ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   F/_wnfc 2335   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279
This theorem is referenced by:  nfovd  5973  nfixpxy  6804
  Copyright terms: Public domain W3C validator