ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvd Unicode version

Theorem nffvd 5527
Description: Deduction version of bound-variable hypothesis builder nffv 5525. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2  |-  ( ph  -> 
F/_ x F )
nffvd.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nffvd  |-  ( ph  -> 
F/_ x ( F `
 A ) )

Proof of Theorem nffvd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2325 . . 3  |-  F/_ x { z  |  A. x  z  e.  F }
2 nfaba1 2325 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
31, 2nffv 5525 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)
4 nffvd.2 . . 3  |-  ( ph  -> 
F/_ x F )
5 nffvd.3 . . 3  |-  ( ph  -> 
F/_ x A )
6 nfnfc1 2322 . . . . 5  |-  F/ x F/_ x F
7 nfnfc1 2322 . . . . 5  |-  F/ x F/_ x A
86, 7nfan 1565 . . . 4  |-  F/ x
( F/_ x F  /\  F/_ x A )
9 abidnf 2905 . . . . . 6  |-  ( F/_ x F  ->  { z  |  A. x  z  e.  F }  =  F )
109adantr 276 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  F }  =  F )
11 abidnf 2905 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
1211adantl 277 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  A }  =  A )
1310, 12fveq12d 5522 . . . 4  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)  =  ( F `
 A ) )
148, 13nfceqdf 2318 . . 3  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
154, 5, 14syl2anc 411 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
163, 15mpbii 148 1  |-  ( ph  -> 
F/_ x ( F `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   F/_wnfc 2306   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-iota 5178  df-fv 5224
This theorem is referenced by:  nfovd  5903  nfixpxy  6716
  Copyright terms: Public domain W3C validator