ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopd Unicode version

Theorem nfopd 3758
Description: Deduction version of bound-variable hypothesis builder nfop 3757. This shows how the deduction version of a not-free theorem such as nfop 3757 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2  |-  ( ph  -> 
F/_ x A )
nfopd.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfopd  |-  ( ph  -> 
F/_ x <. A ,  B >. )

Proof of Theorem nfopd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2305 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
2 nfaba1 2305 . . 3  |-  F/_ x { z  |  A. x  z  e.  B }
31, 2nfop 3757 . 2  |-  F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >.
4 nfopd.2 . . 3  |-  ( ph  -> 
F/_ x A )
5 nfopd.3 . . 3  |-  ( ph  -> 
F/_ x B )
6 nfnfc1 2302 . . . . 5  |-  F/ x F/_ x A
7 nfnfc1 2302 . . . . 5  |-  F/ x F/_ x B
86, 7nfan 1545 . . . 4  |-  F/ x
( F/_ x A  /\  F/_ x B )
9 abidnf 2880 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
109adantr 274 . . . . 5  |-  ( (
F/_ x A  /\  F/_ x B )  ->  { z  |  A. x  z  e.  A }  =  A )
11 abidnf 2880 . . . . . 6  |-  ( F/_ x B  ->  { z  |  A. x  z  e.  B }  =  B )
1211adantl 275 . . . . 5  |-  ( (
F/_ x A  /\  F/_ x B )  ->  { z  |  A. x  z  e.  B }  =  B )
1310, 12opeq12d 3749 . . . 4  |-  ( (
F/_ x A  /\  F/_ x B )  ->  <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >.  =  <. A ,  B >. )
148, 13nfceqdf 2298 . . 3  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >. 
<-> 
F/_ x <. A ,  B >. ) )
154, 5, 14syl2anc 409 . 2  |-  ( ph  ->  ( F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >. 
<-> 
F/_ x <. A ,  B >. ) )
163, 15mpbii 147 1  |-  ( ph  -> 
F/_ x <. A ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    = wceq 1335    e. wcel 2128   {cab 2143   F/_wnfc 2286   <.cop 3563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569
This theorem is referenced by:  nfbrd  4009  nfovd  5847
  Copyright terms: Public domain W3C validator