| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfopd | Unicode version | ||
| Description: Deduction version of bound-variable hypothesis builder nfop 3849. This shows how the deduction version of a not-free theorem such as nfop 3849 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
| Ref | Expression |
|---|---|
| nfopd.2 |
|
| nfopd.3 |
|
| Ref | Expression |
|---|---|
| nfopd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2356 |
. . 3
| |
| 2 | nfaba1 2356 |
. . 3
| |
| 3 | 1, 2 | nfop 3849 |
. 2
|
| 4 | nfopd.2 |
. . 3
| |
| 5 | nfopd.3 |
. . 3
| |
| 6 | nfnfc1 2353 |
. . . . 5
| |
| 7 | nfnfc1 2353 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1589 |
. . . 4
|
| 9 | abidnf 2948 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | abidnf 2948 |
. . . . . 6
| |
| 12 | 11 | adantl 277 |
. . . . 5
|
| 13 | 10, 12 | opeq12d 3841 |
. . . 4
|
| 14 | 8, 13 | nfceqdf 2349 |
. . 3
|
| 15 | 4, 5, 14 | syl2anc 411 |
. 2
|
| 16 | 3, 15 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: nfbrd 4105 nfovd 5996 |
| Copyright terms: Public domain | W3C validator |