| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfopd | Unicode version | ||
| Description: Deduction version of bound-variable hypothesis builder nfop 3824. This shows how the deduction version of a not-free theorem such as nfop 3824 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
| Ref | Expression |
|---|---|
| nfopd.2 |
|
| nfopd.3 |
|
| Ref | Expression |
|---|---|
| nfopd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2345 |
. . 3
| |
| 2 | nfaba1 2345 |
. . 3
| |
| 3 | 1, 2 | nfop 3824 |
. 2
|
| 4 | nfopd.2 |
. . 3
| |
| 5 | nfopd.3 |
. . 3
| |
| 6 | nfnfc1 2342 |
. . . . 5
| |
| 7 | nfnfc1 2342 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1579 |
. . . 4
|
| 9 | abidnf 2932 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | abidnf 2932 |
. . . . . 6
| |
| 12 | 11 | adantl 277 |
. . . . 5
|
| 13 | 10, 12 | opeq12d 3816 |
. . . 4
|
| 14 | 8, 13 | nfceqdf 2338 |
. . 3
|
| 15 | 4, 5, 14 | syl2anc 411 |
. 2
|
| 16 | 3, 15 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: nfbrd 4078 nfovd 5951 |
| Copyright terms: Public domain | W3C validator |