ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv Unicode version

Theorem abbi1dv 2325
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
Assertion
Ref Expression
abbi1dv  |-  ( ph  ->  { x  |  ps }  =  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
21alrimiv 1897 . 2  |-  ( ph  ->  A. x ( ps  <->  x  e.  A ) )
3 abeq1 2315 . 2  |-  ( { x  |  ps }  =  A  <->  A. x ( ps  <->  x  e.  A ) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201
This theorem is referenced by:  abidnf  2941  csbtt  3105  csbvarg  3121  csbie2g  3144  abvor0dc  3484  iinxsng  4001  shftuz  11161
  Copyright terms: Public domain W3C validator