ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv Unicode version

Theorem abbi1dv 2327
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
Assertion
Ref Expression
abbi1dv  |-  ( ph  ->  { x  |  ps }  =  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
21alrimiv 1898 . 2  |-  ( ph  ->  A. x ( ps  <->  x  e.  A ) )
3 abeq1 2317 . 2  |-  ( { x  |  ps }  =  A  <->  A. x ( ps  <->  x  e.  A ) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2178   {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203
This theorem is referenced by:  abidnf  2948  csbtt  3113  csbvarg  3129  csbie2g  3152  abvor0dc  3492  iinxsng  4015  shftuz  11243
  Copyright terms: Public domain W3C validator