ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi1dv Unicode version

Theorem abbi1dv 2349
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbildv.1  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
Assertion
Ref Expression
abbi1dv  |-  ( ph  ->  { x  |  ps }  =  A )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbildv.1 . . 3  |-  ( ph  ->  ( ps  <->  x  e.  A ) )
21alrimiv 1920 . 2  |-  ( ph  ->  A. x ( ps  <->  x  e.  A ) )
3 abeq1 2339 . 2  |-  ( { x  |  ps }  =  A  <->  A. x ( ps  <->  x  e.  A ) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225
This theorem is referenced by:  abidnf  2971  csbtt  3136  csbvarg  3152  csbie2g  3175  abvor0dc  3515  iinxsng  4039  shftuz  11328
  Copyright terms: Public domain W3C validator