ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfimad Unicode version

Theorem nfimad 5032
Description: Deduction version of bound-variable hypothesis builder nfima 5031. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfimad.2  |-  ( ph  -> 
F/_ x A )
nfimad.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfimad  |-  ( ph  -> 
F/_ x ( A
" B ) )

Proof of Theorem nfimad
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2354 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
2 nfaba1 2354 . . 3  |-  F/_ x { z  |  A. x  z  e.  B }
31, 2nfima 5031 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)
4 nfimad.2 . . 3  |-  ( ph  -> 
F/_ x A )
5 nfimad.3 . . 3  |-  ( ph  -> 
F/_ x B )
6 nfnfc1 2351 . . . . 5  |-  F/ x F/_ x A
7 nfnfc1 2351 . . . . 5  |-  F/ x F/_ x B
86, 7nfan 1588 . . . 4  |-  F/ x
( F/_ x A  /\  F/_ x B )
9 abidnf 2941 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
109imaeq1d 5022 . . . . 5  |-  ( F/_ x A  ->  ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  =  ( A " { z  |  A. x  z  e.  B } ) )
11 abidnf 2941 . . . . . 6  |-  ( F/_ x B  ->  { z  |  A. x  z  e.  B }  =  B )
1211imaeq2d 5023 . . . . 5  |-  ( F/_ x B  ->  ( A
" { z  | 
A. x  z  e.  B } )  =  ( A " B
) )
1310, 12sylan9eq 2258 . . . 4  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)  =  ( A
" B ) )
148, 13nfceqdf 2347 . . 3  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( F/_ x ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
154, 5, 14syl2anc 411 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  A } " { z  | 
A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
163, 15mpbii 148 1  |-  ( ph  -> 
F/_ x ( A
" B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2176   {cab 2191   F/_wnfc 2335   "cima 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator