ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfimad Unicode version

Theorem nfimad 4962
Description: Deduction version of bound-variable hypothesis builder nfima 4961. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfimad.2  |-  ( ph  -> 
F/_ x A )
nfimad.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfimad  |-  ( ph  -> 
F/_ x ( A
" B ) )

Proof of Theorem nfimad
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2318 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
2 nfaba1 2318 . . 3  |-  F/_ x { z  |  A. x  z  e.  B }
31, 2nfima 4961 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)
4 nfimad.2 . . 3  |-  ( ph  -> 
F/_ x A )
5 nfimad.3 . . 3  |-  ( ph  -> 
F/_ x B )
6 nfnfc1 2315 . . . . 5  |-  F/ x F/_ x A
7 nfnfc1 2315 . . . . 5  |-  F/ x F/_ x B
86, 7nfan 1558 . . . 4  |-  F/ x
( F/_ x A  /\  F/_ x B )
9 abidnf 2898 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
109imaeq1d 4952 . . . . 5  |-  ( F/_ x A  ->  ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  =  ( A " { z  |  A. x  z  e.  B } ) )
11 abidnf 2898 . . . . . 6  |-  ( F/_ x B  ->  { z  |  A. x  z  e.  B }  =  B )
1211imaeq2d 4953 . . . . 5  |-  ( F/_ x B  ->  ( A
" { z  | 
A. x  z  e.  B } )  =  ( A " B
) )
1310, 12sylan9eq 2223 . . . 4  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)  =  ( A
" B ) )
148, 13nfceqdf 2311 . . 3  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( F/_ x ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
154, 5, 14syl2anc 409 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  A } " { z  | 
A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
163, 15mpbii 147 1  |-  ( ph  -> 
F/_ x ( A
" B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   {cab 2156   F/_wnfc 2299   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator