ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfimad Unicode version

Theorem nfimad 5050
Description: Deduction version of bound-variable hypothesis builder nfima 5049. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfimad.2  |-  ( ph  -> 
F/_ x A )
nfimad.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfimad  |-  ( ph  -> 
F/_ x ( A
" B ) )

Proof of Theorem nfimad
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2356 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
2 nfaba1 2356 . . 3  |-  F/_ x { z  |  A. x  z  e.  B }
31, 2nfima 5049 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)
4 nfimad.2 . . 3  |-  ( ph  -> 
F/_ x A )
5 nfimad.3 . . 3  |-  ( ph  -> 
F/_ x B )
6 nfnfc1 2353 . . . . 5  |-  F/ x F/_ x A
7 nfnfc1 2353 . . . . 5  |-  F/ x F/_ x B
86, 7nfan 1589 . . . 4  |-  F/ x
( F/_ x A  /\  F/_ x B )
9 abidnf 2948 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
109imaeq1d 5040 . . . . 5  |-  ( F/_ x A  ->  ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  =  ( A " { z  |  A. x  z  e.  B } ) )
11 abidnf 2948 . . . . . 6  |-  ( F/_ x B  ->  { z  |  A. x  z  e.  B }  =  B )
1211imaeq2d 5041 . . . . 5  |-  ( F/_ x B  ->  ( A
" { z  | 
A. x  z  e.  B } )  =  ( A " B
) )
1310, 12sylan9eq 2260 . . . 4  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( { z  | 
A. x  z  e.  A } " {
z  |  A. x  z  e.  B }
)  =  ( A
" B ) )
148, 13nfceqdf 2349 . . 3  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( F/_ x ( { z  |  A. x  z  e.  A } " { z  |  A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
154, 5, 14syl2anc 411 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  A } " { z  | 
A. x  z  e.  B } )  <->  F/_ x ( A " B ) ) )
163, 15mpbii 148 1  |-  ( ph  -> 
F/_ x ( A
" B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2178   {cab 2193   F/_wnfc 2337   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator