ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 8093
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7918 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148  (class class class)co 5874   CCcc 7808   0cc0 7810    + caddc 7813
This theorem was proved from axioms:  ax-0id 7918
This theorem is referenced by:  addlid  8094  00id  8096  addid1i  8097  addid1d  8104  addcan2  8136  subid  8174  subid1  8175  addid0  8328  shftval3  10831  reim0  10865  fsum3cvg  11381  summodclem2a  11384
  Copyright terms: Public domain W3C validator