ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 7620
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7453 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7348   0cc0 7350    + caddc 7353
This theorem was proved from axioms:  ax-0id 7453
This theorem is referenced by:  addid2  7621  00id  7623  addid1i  7624  addid1d  7631  addcan2  7663  subid  7701  subid1  7702  addid0  7851  shftval3  10261  reim0  10295  fisumcvg  10766  fsum3cvg  10767  isummolem2a  10771
  Copyright terms: Public domain W3C validator