ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 7864
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7692 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463  (class class class)co 5740   CCcc 7582   0cc0 7584    + caddc 7587
This theorem was proved from axioms:  ax-0id 7692
This theorem is referenced by:  addid2  7865  00id  7867  addid1i  7868  addid1d  7875  addcan2  7907  subid  7945  subid1  7946  addid0  8099  shftval3  10550  reim0  10584  fsum3cvg  11097  summodclem2a  11101
  Copyright terms: Public domain W3C validator