ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 8014
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7841 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128  (class class class)co 5825   CCcc 7731   0cc0 7733    + caddc 7736
This theorem was proved from axioms:  ax-0id 7841
This theorem is referenced by:  addid2  8015  00id  8017  addid1i  8018  addid1d  8025  addcan2  8057  subid  8095  subid1  8096  addid0  8249  shftval3  10731  reim0  10765  fsum3cvg  11279  summodclem2a  11282
  Copyright terms: Public domain W3C validator