ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 8036
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7861 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751   0cc0 7753    + caddc 7756
This theorem was proved from axioms:  ax-0id 7861
This theorem is referenced by:  addid2  8037  00id  8039  addid1i  8040  addid1d  8047  addcan2  8079  subid  8117  subid1  8118  addid0  8271  shftval3  10769  reim0  10803  fsum3cvg  11319  summodclem2a  11322
  Copyright terms: Public domain W3C validator