| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addid0 | Unicode version | ||
| Description: If adding a number to a
another number yields the other number, the added
number must be |
| Ref | Expression |
|---|---|
| addid0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | simpr 110 |
. . . 4
| |
| 3 | 1, 1, 2 | subaddd 8471 |
. . 3
|
| 4 | eqcom 2231 |
. . . . 5
| |
| 5 | simpr 110 |
. . . . . . 7
| |
| 6 | subid 8361 |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | 5, 7 | eqtrd 2262 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 4, 9 | biimtrid 152 |
. . . 4
|
| 11 | 10 | adantr 276 |
. . 3
|
| 12 | 3, 11 | sylbird 170 |
. 2
|
| 13 | oveq2 6008 |
. . . . 5
| |
| 14 | addrid 8280 |
. . . . 5
| |
| 15 | 13, 14 | sylan9eqr 2284 |
. . . 4
|
| 16 | 15 | ex 115 |
. . 3
|
| 17 | 16 | adantr 276 |
. 2
|
| 18 | 12, 17 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 |
| This theorem is referenced by: addn0nid 8516 |
| Copyright terms: Public domain | W3C validator |