ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 Unicode version

Theorem addid0 8332
Description: If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )

Proof of Theorem addid0
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  X  e.  CC )
2 simpr 110 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  Y  e.  CC )
31, 1, 2subaddd 8288 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  <-> 
( X  +  Y
)  =  X ) )
4 eqcom 2179 . . . . 5  |-  ( ( X  -  X )  =  Y  <->  Y  =  ( X  -  X
) )
5 simpr 110 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  ( X  -  X ) )
6 subid 8178 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  X )  =  0 )
76adantr 276 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  -> 
( X  -  X
)  =  0 )
85, 7eqtrd 2210 . . . . . 6  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  0 )
98ex 115 . . . . 5  |-  ( X  e.  CC  ->  ( Y  =  ( X  -  X )  ->  Y  =  0 ) )
104, 9biimtrid 152 . . . 4  |-  ( X  e.  CC  ->  (
( X  -  X
)  =  Y  ->  Y  =  0 ) )
1110adantr 276 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  ->  Y  =  0 ) )
123, 11sylbird 170 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  ->  Y  =  0 ) )
13 oveq2 5885 . . . . 5  |-  ( Y  =  0  ->  ( X  +  Y )  =  ( X  + 
0 ) )
14 addid1 8097 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  0 )  =  X )
1513, 14sylan9eqr 2232 . . . 4  |-  ( ( X  e.  CC  /\  Y  =  0 )  ->  ( X  +  Y )  =  X )
1615ex 115 . . 3  |-  ( X  e.  CC  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1716adantr 276 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1812, 17impbid 129 1  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811   0cc0 7813    + caddc 7816    - cmin 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132
This theorem is referenced by:  addn0nid  8333
  Copyright terms: Public domain W3C validator