ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 Unicode version

Theorem addid0 8399
Description: If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )

Proof of Theorem addid0
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  X  e.  CC )
2 simpr 110 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  Y  e.  CC )
31, 1, 2subaddd 8355 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  <-> 
( X  +  Y
)  =  X ) )
4 eqcom 2198 . . . . 5  |-  ( ( X  -  X )  =  Y  <->  Y  =  ( X  -  X
) )
5 simpr 110 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  ( X  -  X ) )
6 subid 8245 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  X )  =  0 )
76adantr 276 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  -> 
( X  -  X
)  =  0 )
85, 7eqtrd 2229 . . . . . 6  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  0 )
98ex 115 . . . . 5  |-  ( X  e.  CC  ->  ( Y  =  ( X  -  X )  ->  Y  =  0 ) )
104, 9biimtrid 152 . . . 4  |-  ( X  e.  CC  ->  (
( X  -  X
)  =  Y  ->  Y  =  0 ) )
1110adantr 276 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  ->  Y  =  0 ) )
123, 11sylbird 170 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  ->  Y  =  0 ) )
13 oveq2 5930 . . . . 5  |-  ( Y  =  0  ->  ( X  +  Y )  =  ( X  + 
0 ) )
14 addrid 8164 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  0 )  =  X )
1513, 14sylan9eqr 2251 . . . 4  |-  ( ( X  e.  CC  /\  Y  =  0 )  ->  ( X  +  Y )  =  X )
1615ex 115 . . 3  |-  ( X  e.  CC  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1716adantr 276 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1812, 17impbid 129 1  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882    - cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  addn0nid  8400
  Copyright terms: Public domain W3C validator