ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 Unicode version

Theorem addid0 8292
Description: If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )

Proof of Theorem addid0
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  X  e.  CC )
2 simpr 109 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  Y  e.  CC )
31, 1, 2subaddd 8248 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  <-> 
( X  +  Y
)  =  X ) )
4 eqcom 2172 . . . . 5  |-  ( ( X  -  X )  =  Y  <->  Y  =  ( X  -  X
) )
5 simpr 109 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  ( X  -  X ) )
6 subid 8138 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  X )  =  0 )
76adantr 274 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  -> 
( X  -  X
)  =  0 )
85, 7eqtrd 2203 . . . . . 6  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  0 )
98ex 114 . . . . 5  |-  ( X  e.  CC  ->  ( Y  =  ( X  -  X )  ->  Y  =  0 ) )
104, 9syl5bi 151 . . . 4  |-  ( X  e.  CC  ->  (
( X  -  X
)  =  Y  ->  Y  =  0 ) )
1110adantr 274 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  ->  Y  =  0 ) )
123, 11sylbird 169 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  ->  Y  =  0 ) )
13 oveq2 5861 . . . . 5  |-  ( Y  =  0  ->  ( X  +  Y )  =  ( X  + 
0 ) )
14 addid1 8057 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  0 )  =  X )
1513, 14sylan9eqr 2225 . . . 4  |-  ( ( X  e.  CC  /\  Y  =  0 )  ->  ( X  +  Y )  =  X )
1615ex 114 . . 3  |-  ( X  e.  CC  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1716adantr 274 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1812, 17impbid 128 1  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772   0cc0 7774    + caddc 7777    - cmin 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092
This theorem is referenced by:  addn0nid  8293
  Copyright terms: Public domain W3C validator