| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| addlid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8071 |
. . 3
| |
| 2 | addcom 8216 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | addrid 8217 |
. 2
| |
| 5 | 3, 4 | eqtr3d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-addcom 8032 ax-i2m1 8037 ax-0id 8040 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: readdcan 8219 addlidi 8222 addlidd 8229 cnegexlem1 8254 cnegexlem2 8255 addcan 8259 negneg 8329 fz0to4untppr 10253 fzo0addel 10324 fzoaddel2 10326 divfl0 10446 modqid 10501 swrdspsleq 11128 swrds1 11129 sumrbdclem 11732 summodclem2a 11736 fisum0diag2 11802 eftlub 12045 gcdid 12351 cncrng 14375 ptolemy 15340 |
| Copyright terms: Public domain | W3C validator |