| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| addlid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8126 |
. . 3
| |
| 2 | addcom 8271 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | addrid 8272 |
. 2
| |
| 5 | 3, 4 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-mulcl 8085 ax-addcom 8087 ax-i2m1 8092 ax-0id 8095 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: readdcan 8274 addlidi 8277 addlidd 8284 cnegexlem1 8309 cnegexlem2 8310 addcan 8314 negneg 8384 fz0to4untppr 10308 fzo0addel 10381 fzoaddel2 10383 divfl0 10503 modqid 10558 swrdspsleq 11185 swrds1 11186 sumrbdclem 11874 summodclem2a 11878 fisum0diag2 11944 eftlub 12187 gcdid 12493 cncrng 14518 ptolemy 15483 |
| Copyright terms: Public domain | W3C validator |