| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| addlid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8035 |
. . 3
| |
| 2 | addcom 8180 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | addrid 8181 |
. 2
| |
| 5 | 3, 4 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: readdcan 8183 addlidi 8186 addlidd 8193 cnegexlem1 8218 cnegexlem2 8219 addcan 8223 negneg 8293 fz0to4untppr 10216 fzoaddel2 10286 divfl0 10403 modqid 10458 sumrbdclem 11559 summodclem2a 11563 fisum0diag2 11629 eftlub 11872 gcdid 12178 cncrng 14201 ptolemy 15144 |
| Copyright terms: Public domain | W3C validator |