ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlid Unicode version

Theorem addlid 8158
Description:  0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addlid  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )

Proof of Theorem addlid
StepHypRef Expression
1 0cn 8011 . . 3  |-  0  e.  CC
2 addcom 8156 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  ( A  +  0 )  =  ( 0  +  A ) )
31, 2mpan2 425 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  ( 0  +  A ) )
4 addrid 8157 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
53, 4eqtr3d 2228 1  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970  ax-addcom 7972  ax-i2m1 7977  ax-0id 7980
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  readdcan  8159  addid2i  8162  addlidd  8169  cnegexlem1  8194  cnegexlem2  8195  addcan  8199  negneg  8269  fz0to4untppr  10190  fzoaddel2  10260  divfl0  10365  modqid  10420  sumrbdclem  11520  summodclem2a  11524  fisum0diag2  11590  eftlub  11833  gcdid  12123  cncrng  14057  ptolemy  14959
  Copyright terms: Public domain W3C validator