| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| addlid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8021 |
. . 3
| |
| 2 | addcom 8166 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | addrid 8167 |
. 2
| |
| 5 | 3, 4 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7975 ax-icn 7977 ax-addcl 7978 ax-mulcl 7980 ax-addcom 7982 ax-i2m1 7987 ax-0id 7990 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: readdcan 8169 addlidi 8172 addlidd 8179 cnegexlem1 8204 cnegexlem2 8205 addcan 8209 negneg 8279 fz0to4untppr 10202 fzoaddel2 10272 divfl0 10389 modqid 10444 sumrbdclem 11545 summodclem2a 11549 fisum0diag2 11615 eftlub 11858 gcdid 12164 cncrng 14151 ptolemy 15086 |
| Copyright terms: Public domain | W3C validator |