| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addlid | Unicode version | ||
| Description:  | 
| Ref | Expression | 
|---|---|
| addlid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0cn 8018 | 
. . 3
 | |
| 2 | addcom 8163 | 
. . 3
 | |
| 3 | 1, 2 | mpan2 425 | 
. 2
 | 
| 4 | addrid 8164 | 
. 2
 | |
| 5 | 3, 4 | eqtr3d 2231 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-addcom 7979 ax-i2m1 7984 ax-0id 7987 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: readdcan 8166 addlidi 8169 addlidd 8176 cnegexlem1 8201 cnegexlem2 8202 addcan 8206 negneg 8276 fz0to4untppr 10199 fzoaddel2 10269 divfl0 10386 modqid 10441 sumrbdclem 11542 summodclem2a 11546 fisum0diag2 11612 eftlub 11855 gcdid 12153 cncrng 14125 ptolemy 15060 | 
| Copyright terms: Public domain | W3C validator |