Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7887 | . 2 | |
2 | addid1 8032 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 cc0 7749 caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: negdii 8178 addgt0 8342 addgegt0 8343 addgtge0 8344 addge0 8345 add20 8368 recexaplem2 8545 crap0 8849 iap0 9076 decaddm10 9376 10p10e20 9412 ser0 10445 bcpasc 10675 abs00ap 11000 fsumadd 11343 fsumrelem 11408 arisum 11435 bezoutr1 11962 nnnn0modprm0 12183 pcaddlem 12266 1kp2ke3k 13565 |
Copyright terms: Public domain | W3C validator |