Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7912 | . 2 | |
2 | addid1 8057 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cc0 7774 caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: negdii 8203 addgt0 8367 addgegt0 8368 addgtge0 8369 addge0 8370 add20 8393 recexaplem2 8570 crap0 8874 iap0 9101 decaddm10 9401 10p10e20 9437 ser0 10470 bcpasc 10700 abs00ap 11026 fsumadd 11369 fsumrelem 11434 arisum 11461 bezoutr1 11988 nnnn0modprm0 12209 pcaddlem 12292 1kp2ke3k 13759 |
Copyright terms: Public domain | W3C validator |