ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id Unicode version

Theorem 00id 8248
Description:  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id  |-  ( 0  +  0 )  =  0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8099 . 2  |-  0  e.  CC
2 addrid 8245 . 2  |-  ( 0  e.  CC  ->  (
0  +  0 )  =  0 )
31, 2ax-mp 5 1  |-  ( 0  +  0 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   0cc0 7960    + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-i2m1 8065  ax-0id 8068
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203
This theorem is referenced by:  negdii  8391  addgt0  8556  addgegt0  8557  addgtge0  8558  addge0  8559  add20  8582  recexaplem2  8760  crap0  9066  iap0  9295  decaddm10  9597  10p10e20  9633  ser0  10715  bcpasc  10948  abs00ap  11488  fsumadd  11832  fsumrelem  11897  arisum  11924  bezoutr1  12469  nnnn0modprm0  12693  pcaddlem  12777  4sqlem19  12847  cnfld0  14448  1kp2ke3k  15860
  Copyright terms: Public domain W3C validator