| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 00id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8063 |
. 2
| |
| 2 | addrid 8209 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 ax-0id 8032 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: negdii 8355 addgt0 8520 addgegt0 8521 addgtge0 8522 addge0 8523 add20 8546 recexaplem2 8724 crap0 9030 iap0 9259 decaddm10 9561 10p10e20 9597 ser0 10676 bcpasc 10909 abs00ap 11344 fsumadd 11688 fsumrelem 11753 arisum 11780 bezoutr1 12325 nnnn0modprm0 12549 pcaddlem 12633 4sqlem19 12703 cnfld0 14304 1kp2ke3k 15622 |
| Copyright terms: Public domain | W3C validator |