![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
00id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8011 |
. 2
![]() ![]() ![]() ![]() | |
2 | addrid 8157 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: negdii 8303 addgt0 8467 addgegt0 8468 addgtge0 8469 addge0 8470 add20 8493 recexaplem2 8671 crap0 8977 iap0 9205 decaddm10 9506 10p10e20 9542 ser0 10604 bcpasc 10837 abs00ap 11206 fsumadd 11549 fsumrelem 11614 arisum 11641 bezoutr1 12170 nnnn0modprm0 12393 pcaddlem 12477 4sqlem19 12547 cnfld0 14059 1kp2ke3k 15216 |
Copyright terms: Public domain | W3C validator |