| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 00id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8134 |
. 2
| |
| 2 | addrid 8280 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 ax-0id 8103 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: negdii 8426 addgt0 8591 addgegt0 8592 addgtge0 8593 addge0 8594 add20 8617 recexaplem2 8795 crap0 9101 iap0 9330 decaddm10 9632 10p10e20 9668 ser0 10750 bcpasc 10983 abs00ap 11568 fsumadd 11912 fsumrelem 11977 arisum 12004 bezoutr1 12549 nnnn0modprm0 12773 pcaddlem 12857 4sqlem19 12927 cnfld0 14529 1kp2ke3k 16046 |
| Copyright terms: Public domain | W3C validator |