ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id Unicode version

Theorem 00id 8162
Description:  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id  |-  ( 0  +  0 )  =  0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8013 . 2  |-  0  e.  CC
2 addrid 8159 . 2  |-  ( 0  e.  CC  ->  (
0  +  0 )  =  0 )
31, 2ax-mp 5 1  |-  ( 0  +  0 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  negdii  8305  addgt0  8469  addgegt0  8470  addgtge0  8471  addge0  8472  add20  8495  recexaplem2  8673  crap0  8979  iap0  9208  decaddm10  9509  10p10e20  9545  ser0  10607  bcpasc  10840  abs00ap  11209  fsumadd  11552  fsumrelem  11617  arisum  11644  bezoutr1  12173  nnnn0modprm0  12396  pcaddlem  12480  4sqlem19  12550  cnfld0  14070  1kp2ke3k  15286
  Copyright terms: Public domain W3C validator