Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7899 | . 2 | |
2 | addid1 8044 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 cc0 7761 caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 ax-i2m1 7866 ax-0id 7869 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: negdii 8190 addgt0 8354 addgegt0 8355 addgtge0 8356 addge0 8357 add20 8380 recexaplem2 8557 crap0 8861 iap0 9088 decaddm10 9388 10p10e20 9424 ser0 10457 bcpasc 10687 abs00ap 11013 fsumadd 11356 fsumrelem 11421 arisum 11448 bezoutr1 11975 nnnn0modprm0 12196 pcaddlem 12279 1kp2ke3k 13680 |
Copyright terms: Public domain | W3C validator |