| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 00id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8099 |
. 2
| |
| 2 | addrid 8245 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: negdii 8391 addgt0 8556 addgegt0 8557 addgtge0 8558 addge0 8559 add20 8582 recexaplem2 8760 crap0 9066 iap0 9295 decaddm10 9597 10p10e20 9633 ser0 10715 bcpasc 10948 abs00ap 11488 fsumadd 11832 fsumrelem 11897 arisum 11924 bezoutr1 12469 nnnn0modprm0 12693 pcaddlem 12777 4sqlem19 12847 cnfld0 14448 1kp2ke3k 15860 |
| Copyright terms: Public domain | W3C validator |