ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id Unicode version

Theorem 00id 8035
Description:  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id  |-  ( 0  +  0 )  =  0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 7887 . 2  |-  0  e.  CC
2 addid1 8032 . 2  |-  ( 0  e.  CC  ->  (
0  +  0 )  =  0 )
31, 2ax-mp 5 1  |-  ( 0  +  0 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747   0cc0 7749    + caddc 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-1cn 7842  ax-icn 7844  ax-addcl 7845  ax-mulcl 7847  ax-i2m1 7854  ax-0id 7857
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  negdii  8178  addgt0  8342  addgegt0  8343  addgtge0  8344  addge0  8345  add20  8368  recexaplem2  8545  crap0  8849  iap0  9076  decaddm10  9376  10p10e20  9412  ser0  10445  bcpasc  10675  abs00ap  11000  fsumadd  11343  fsumrelem  11408  arisum  11435  bezoutr1  11962  nnnn0modprm0  12183  pcaddlem  12266  1kp2ke3k  13565
  Copyright terms: Public domain W3C validator