| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 00id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8064 |
. 2
| |
| 2 | addrid 8210 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 ax-0id 8033 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: negdii 8356 addgt0 8521 addgegt0 8522 addgtge0 8523 addge0 8524 add20 8547 recexaplem2 8725 crap0 9031 iap0 9260 decaddm10 9562 10p10e20 9598 ser0 10678 bcpasc 10911 abs00ap 11373 fsumadd 11717 fsumrelem 11782 arisum 11809 bezoutr1 12354 nnnn0modprm0 12578 pcaddlem 12662 4sqlem19 12732 cnfld0 14333 1kp2ke3k 15660 |
| Copyright terms: Public domain | W3C validator |