![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
00id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7951 |
. 2
![]() ![]() ![]() ![]() | |
2 | addid1 8097 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-mulcl 7911 ax-i2m1 7918 ax-0id 7921 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: negdii 8243 addgt0 8407 addgegt0 8408 addgtge0 8409 addge0 8410 add20 8433 recexaplem2 8611 crap0 8917 iap0 9144 decaddm10 9444 10p10e20 9480 ser0 10516 bcpasc 10748 abs00ap 11073 fsumadd 11416 fsumrelem 11481 arisum 11508 bezoutr1 12036 nnnn0modprm0 12257 pcaddlem 12340 cnfld0 13550 1kp2ke3k 14561 |
Copyright terms: Public domain | W3C validator |