![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
00id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7478 |
. 2
![]() ![]() ![]() ![]() | |
2 | addid1 7618 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-mulcl 7441 ax-i2m1 7448 ax-0id 7451 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: negdii 7764 addgt0 7924 addgegt0 7925 addgtge0 7926 addge0 7927 add20 7950 recexaplem2 8119 crap0 8416 iap0 8637 decaddm10 8933 10p10e20 8969 iser0 9943 ser0 9945 bcpasc 10170 abs00ap 10491 fsumadd 10796 fsumrelem 10861 arisum 10888 bezoutr1 11296 1kp2ke3k 11606 |
Copyright terms: Public domain | W3C validator |