ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id Unicode version

Theorem 00id 8212
Description:  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id  |-  ( 0  +  0 )  =  0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8063 . 2  |-  0  e.  CC
2 addrid 8209 . 2  |-  ( 0  e.  CC  ->  (
0  +  0 )  =  0 )
31, 2ax-mp 5 1  |-  ( 0  +  0 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922   0cc0 7924    + caddc 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-mulcl 8022  ax-i2m1 8029  ax-0id 8032
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200
This theorem is referenced by:  negdii  8355  addgt0  8520  addgegt0  8521  addgtge0  8522  addge0  8523  add20  8546  recexaplem2  8724  crap0  9030  iap0  9259  decaddm10  9561  10p10e20  9597  ser0  10676  bcpasc  10909  abs00ap  11344  fsumadd  11688  fsumrelem  11753  arisum  11780  bezoutr1  12325  nnnn0modprm0  12549  pcaddlem  12633  4sqlem19  12703  cnfld0  14304  1kp2ke3k  15622
  Copyright terms: Public domain W3C validator