![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
00id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8013 |
. 2
![]() ![]() ![]() ![]() | |
2 | addrid 8159 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: negdii 8305 addgt0 8469 addgegt0 8470 addgtge0 8471 addge0 8472 add20 8495 recexaplem2 8673 crap0 8979 iap0 9208 decaddm10 9509 10p10e20 9545 ser0 10607 bcpasc 10840 abs00ap 11209 fsumadd 11552 fsumrelem 11617 arisum 11644 bezoutr1 12173 nnnn0modprm0 12396 pcaddlem 12480 4sqlem19 12550 cnfld0 14070 1kp2ke3k 15286 |
Copyright terms: Public domain | W3C validator |