| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 00id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8035 |
. 2
| |
| 2 | addrid 8181 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: negdii 8327 addgt0 8492 addgegt0 8493 addgtge0 8494 addge0 8495 add20 8518 recexaplem2 8696 crap0 9002 iap0 9231 decaddm10 9532 10p10e20 9568 ser0 10642 bcpasc 10875 abs00ap 11244 fsumadd 11588 fsumrelem 11653 arisum 11680 bezoutr1 12225 nnnn0modprm0 12449 pcaddlem 12533 4sqlem19 12603 cnfld0 14203 1kp2ke3k 15454 |
| Copyright terms: Public domain | W3C validator |