Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1 | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7861 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 + caddc 7756 |
This theorem was proved from axioms: ax-0id 7861 |
This theorem is referenced by: addid2 8037 00id 8039 addid1i 8040 addid1d 8047 addcan2 8079 subid 8117 subid1 8118 addid0 8271 shftval3 10769 reim0 10803 fsum3cvg 11319 summodclem2a 11322 |
Copyright terms: Public domain | W3C validator |