Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1 | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7882 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 |
This theorem was proved from axioms: ax-0id 7882 |
This theorem is referenced by: addid2 8058 00id 8060 addid1i 8061 addid1d 8068 addcan2 8100 subid 8138 subid1 8139 addid0 8292 shftval3 10791 reim0 10825 fsum3cvg 11341 summodclem2a 11344 |
Copyright terms: Public domain | W3C validator |