ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 8091
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7916 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  (class class class)co 5872  cc 7806  0cc0 7808   + caddc 7811
This theorem was proved from axioms:  ax-0id 7916
This theorem is referenced by:  addlid  8092  00id  8094  addid1i  8095  addid1d  8102  addcan2  8134  subid  8172  subid1  8173  addid0  8326  shftval3  10829  reim0  10863  fsum3cvg  11379  summodclem2a  11382
  Copyright terms: Public domain W3C validator