ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 8057
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7882 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  0cc0 7774   + caddc 7777
This theorem was proved from axioms:  ax-0id 7882
This theorem is referenced by:  addid2  8058  00id  8060  addid1i  8061  addid1d  8068  addcan2  8100  subid  8138  subid1  8139  addid0  8292  shftval3  10791  reim0  10825  fsum3cvg  11341  summodclem2a  11344
  Copyright terms: Public domain W3C validator