ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 8097
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7921 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  (class class class)co 5877  cc 7811  0cc0 7813   + caddc 7816
This theorem was proved from axioms:  ax-0id 7921
This theorem is referenced by:  addlid  8098  00id  8100  addid1i  8101  addid1d  8108  addcan2  8140  subid  8178  subid1  8179  addid0  8332  shftval3  10838  reim0  10872  fsum3cvg  11388  summodclem2a  11391
  Copyright terms: Public domain W3C validator