ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 8036
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7861 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751  0cc0 7753   + caddc 7756
This theorem was proved from axioms:  ax-0id 7861
This theorem is referenced by:  addid2  8037  00id  8039  addid1i  8040  addid1d  8047  addcan2  8079  subid  8117  subid1  8118  addid0  8271  shftval3  10769  reim0  10803  fsum3cvg  11319  summodclem2a  11322
  Copyright terms: Public domain W3C validator