![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid1 | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7921 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 0cc0 7813 + caddc 7816 |
This theorem was proved from axioms: ax-0id 7921 |
This theorem is referenced by: addlid 8098 00id 8100 addid1i 8101 addid1d 8108 addcan2 8140 subid 8178 subid1 8179 addid0 8332 shftval3 10838 reim0 10872 fsum3cvg 11388 summodclem2a 11391 |
Copyright terms: Public domain | W3C validator |