ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 7599
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7432 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438  (class class class)co 5634  cc 7327  0cc0 7329   + caddc 7332
This theorem was proved from axioms:  ax-0id 7432
This theorem is referenced by:  addid2  7600  00id  7602  addid1i  7603  addid1d  7610  addcan2  7642  subid  7680  subid1  7681  addid0  7830  shftval3  10226  reim0  10260  fisumcvg  10730  fsum3cvg  10731  isummolem2a  10735
  Copyright terms: Public domain W3C validator