![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcom | Unicode version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7911 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-addcom 7911 |
This theorem is referenced by: addlid 8096 readdcan 8097 addcomi 8101 addcomd 8108 add12 8115 add32 8116 add42 8119 cnegexlem1 8132 cnegexlem3 8134 cnegex2 8136 subsub23 8162 pncan2 8164 addsub 8168 addsub12 8170 addsubeq4 8172 sub32 8191 pnpcan2 8197 ppncan 8199 sub4 8202 negsubdi2 8216 ltadd2 8376 ltaddnegr 8382 ltaddsub2 8394 leaddsub2 8396 leltadd 8404 ltaddpos2 8410 addge02 8430 conjmulap 8686 recreclt 8857 avgle1 9159 avgle2 9160 nn0nnaddcl 9207 xaddcom 9861 fzen 10043 fzshftral 10108 flqzadd 10298 addmodidr 10373 nn0ennn 10433 ser3add 10505 bernneq2 10642 shftval2 10835 shftval4 10837 crim 10867 resqrexlemover 11019 climshft2 11314 summodclem3 11388 binom1dif 11495 isumshft 11498 arisum 11506 mertenslemi1 11543 addcos 11754 demoivreALT 11781 dvdsaddr 11844 divalgb 11930 hashdvds 12221 pythagtriplem2 12266 mulgnndir 13012 cncrng 13466 ioo2bl 14046 reeff1olem 14195 ptolemy 14248 |
Copyright terms: Public domain | W3C validator |