![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid1d | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addid1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addid1 8097 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7921 |
This theorem is referenced by: subsub2 8187 negsub 8207 ltaddneg 8383 ltaddpos 8411 addge01 8431 add20 8433 apreap 8546 nnge1 8944 nnnn0addcl 9208 un0addcl 9211 peano2z 9291 zaddcl 9295 uzaddcl 9588 xaddid1 9864 fzosubel3 10198 expadd 10564 faclbnd6 10726 omgadd 10784 reim0b 10873 rereb 10874 immul2 10891 resqrexlemcalc3 11027 resqrexlemnm 11029 max0addsup 11230 fsumsplit 11417 sumsplitdc 11442 bezoutlema 12002 pcadd 12341 pcmpt 12343 mulgnn0dir 13018 cosmpi 14322 sinppi 14323 sinhalfpip 14326 trilpolemlt1 14874 |
Copyright terms: Public domain | W3C validator |