Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1d | Unicode version |
Description: is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 |
Ref | Expression |
---|---|
addid1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 | |
2 | addid1 7992 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 (class class class)co 5814 cc 7709 cc0 7711 caddc 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7819 |
This theorem is referenced by: subsub2 8082 negsub 8102 ltaddneg 8278 ltaddpos 8306 addge01 8326 add20 8328 apreap 8441 nnge1 8835 nnnn0addcl 9099 un0addcl 9102 peano2z 9182 zaddcl 9186 uzaddcl 9476 xaddid1 9744 fzosubel3 10073 expadd 10439 faclbnd6 10595 omgadd 10653 reim0b 10739 rereb 10740 immul2 10757 resqrexlemcalc3 10893 resqrexlemnm 10895 max0addsup 11096 fsumsplit 11281 sumsplitdc 11306 bezoutlema 11854 cosmpi 13076 sinppi 13077 sinhalfpip 13080 trilpolemlt1 13553 |
Copyright terms: Public domain | W3C validator |