ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan2 Unicode version

Theorem addcan2 8323
Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )

Proof of Theorem addcan2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex 8320 . . 3  |-  ( C  e.  CC  ->  E. x  e.  CC  ( C  +  x )  =  0 )
213ad2ant3 1044 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( C  +  x )  =  0 )
3 oveq1 6007 . . . 4  |-  ( ( A  +  C )  =  ( B  +  C )  ->  (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x ) )
4 simpl1 1024 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
5 simpl3 1026 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
6 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
74, 5, 6addassd 8165 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  ( A  +  ( C  +  x ) ) )
8 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
98oveq2d 6016 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  ( C  +  x ) )  =  ( A  +  0 ) )
10 addrid 8280 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
114, 10syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  0 )  =  A )
127, 9, 113eqtrd 2266 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  A )
13 simpl2 1025 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1413, 5, 6addassd 8165 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  ( B  +  ( C  +  x ) ) )
158oveq2d 6016 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  ( C  +  x ) )  =  ( B  +  0 ) )
16 addrid 8280 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  +  0 )  =  B )
1713, 16syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  0 )  =  B )
1814, 15, 173eqtrd 2266 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  B )
1912, 18eqeq12d 2244 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x )  <->  A  =  B ) )
203, 19imbitrid 154 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  ->  A  =  B ) )
21 oveq1 6007 . . 3  |-  ( A  =  B  ->  ( A  +  C )  =  ( B  +  C ) )
2220, 21impbid1 142 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
232, 22rexlimddv 2653 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509  (class class class)co 6000   CCcc 7993   0cc0 7995    + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  addcan2i  8325  addcan2d  8327  muleqadd  8811
  Copyright terms: Public domain W3C validator