| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addcan2 | Unicode version | ||
| Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| addcan2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnegex 8204 | 
. . 3
 | |
| 2 | 1 | 3ad2ant3 1022 | 
. 2
 | 
| 3 | oveq1 5929 | 
. . . 4
 | |
| 4 | simpl1 1002 | 
. . . . . . 7
 | |
| 5 | simpl3 1004 | 
. . . . . . 7
 | |
| 6 | simprl 529 | 
. . . . . . 7
 | |
| 7 | 4, 5, 6 | addassd 8049 | 
. . . . . 6
 | 
| 8 | simprr 531 | 
. . . . . . 7
 | |
| 9 | 8 | oveq2d 5938 | 
. . . . . 6
 | 
| 10 | addrid 8164 | 
. . . . . . 7
 | |
| 11 | 4, 10 | syl 14 | 
. . . . . 6
 | 
| 12 | 7, 9, 11 | 3eqtrd 2233 | 
. . . . 5
 | 
| 13 | simpl2 1003 | 
. . . . . . 7
 | |
| 14 | 13, 5, 6 | addassd 8049 | 
. . . . . 6
 | 
| 15 | 8 | oveq2d 5938 | 
. . . . . 6
 | 
| 16 | addrid 8164 | 
. . . . . . 7
 | |
| 17 | 13, 16 | syl 14 | 
. . . . . 6
 | 
| 18 | 14, 15, 17 | 3eqtrd 2233 | 
. . . . 5
 | 
| 19 | 12, 18 | eqeq12d 2211 | 
. . . 4
 | 
| 20 | 3, 19 | imbitrid 154 | 
. . 3
 | 
| 21 | oveq1 5929 | 
. . 3
 | |
| 22 | 20, 21 | impbid1 142 | 
. 2
 | 
| 23 | 2, 22 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: addcan2i 8209 addcan2d 8211 muleqadd 8695 | 
| Copyright terms: Public domain | W3C validator |