ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan2 Unicode version

Theorem addcan2 8273
Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )

Proof of Theorem addcan2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex 8270 . . 3  |-  ( C  e.  CC  ->  E. x  e.  CC  ( C  +  x )  =  0 )
213ad2ant3 1023 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( C  +  x )  =  0 )
3 oveq1 5964 . . . 4  |-  ( ( A  +  C )  =  ( B  +  C )  ->  (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x ) )
4 simpl1 1003 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
5 simpl3 1005 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
6 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
74, 5, 6addassd 8115 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  ( A  +  ( C  +  x ) ) )
8 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
98oveq2d 5973 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  ( C  +  x ) )  =  ( A  +  0 ) )
10 addrid 8230 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
114, 10syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  0 )  =  A )
127, 9, 113eqtrd 2243 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  A )
13 simpl2 1004 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1413, 5, 6addassd 8115 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  ( B  +  ( C  +  x ) ) )
158oveq2d 5973 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  ( C  +  x ) )  =  ( B  +  0 ) )
16 addrid 8230 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  +  0 )  =  B )
1713, 16syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  0 )  =  B )
1814, 15, 173eqtrd 2243 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  B )
1912, 18eqeq12d 2221 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x )  <->  A  =  B ) )
203, 19imbitrid 154 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  ->  A  =  B ) )
21 oveq1 5964 . . 3  |-  ( A  =  B  ->  ( A  +  C )  =  ( B  +  C ) )
2220, 21impbid1 142 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
232, 22rexlimddv 2629 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486  (class class class)co 5957   CCcc 7943   0cc0 7945    + caddc 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  addcan2i  8275  addcan2d  8277  muleqadd  8761
  Copyright terms: Public domain W3C validator