ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg Unicode version

Theorem fsum3cvg 11319
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isummo.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fisumcvg.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, N    ph, k    k, M   
k, F
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg
Dummy variables  n  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 isumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9475 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
5 seqex 10382 . . 3  |-  seq M
(  +  ,  F
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  F )  e. 
_V )
7 eqid 2165 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 9471 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
92, 8syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9475 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1110adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ZZ )
12 iftrue 3525 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
1312adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
14 isummo.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1513, 14eqeltrd 2243 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1615ex 114 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
18 iffalse 3528 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
19 0cn 7891 . . . . . . . . 9  |-  0  e.  CC
2018, 19eqeltrdi 2257 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
22 isummo.dc . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
23 exmiddc 826 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2422, 23syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2517, 21, 24mpjaod 708 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
26 isummo.1 . . . . . . 7  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
2726fvmpt2 5569 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
2811, 25, 27syl2anc 409 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
2928, 25eqeltrd 2243 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
307, 9, 29serf 10409 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> CC )
3130, 2ffvelrnd 5621 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
32 addid1 8036 . . . . 5  |-  ( m  e.  CC  ->  (
m  +  0 )  =  m )
3332adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  CC )  ->  ( m  +  0 )  =  m )
342adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
35 simpr 109 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  n  e.  ( ZZ>= `  N )
)
3631adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
37 elfzuz 9956 . . . . . 6  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
38 eluzelz 9475 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  m  e.  ZZ )
3938adantl 275 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ZZ )
40 fisumcvg.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( M ... N ) )
4140sseld 3141 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  A  ->  m  e.  ( M ... N ) ) )
42 fznuz 10037 . . . . . . . . . . 11  |-  ( m  e.  ( M ... N )  ->  -.  m  e.  ( ZZ>= `  ( N  +  1
) ) )
4341, 42syl6 33 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  A  ->  -.  m  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
4443con2d 614 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( N  + 
1 ) )  ->  -.  m  e.  A
) )
4544imp 123 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  m  e.  A )
4639, 45eldifd 3126 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ( ZZ  \  A ) )
47 fveqeq2 5495 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  =  0  <->  ( F `  m )  =  0 ) )
48 eldifi 3244 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
49 eldifn 3245 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
5049, 18syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
5150, 19eqeltrdi 2257 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
5248, 51, 27syl2anc 409 . . . . . . . . 9  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
5352, 50eqtrd 2198 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  0 )
5447, 53vtoclga 2792 . . . . . . 7  |-  ( m  e.  ( ZZ  \  A )  ->  ( F `  m )  =  0 )
5546, 54syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  m )  =  0 )
5637, 55sylan2 284 . . . . 5  |-  ( (
ph  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
5756adantlr 469 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
58 fveq2 5486 . . . . . 6  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
5958eleq1d 2235 . . . . 5  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
6029ralrimiva 2539 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
6160ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
62 simpr 109 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
6359, 61, 62rspcdva 2835 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  ( F `  m )  e.  CC )
64 addcl 7878 . . . . 5  |-  ( ( m  e.  CC  /\  z  e.  CC )  ->  ( m  +  z )  e.  CC )
6564adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  ( m  e.  CC  /\  z  e.  CC ) )  -> 
( m  +  z )  e.  CC )
6633, 34, 35, 36, 57, 63, 65seq3id2 10444 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  =  (  seq M (  +  ,  F ) `  n
) )
6766eqcomd 2171 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  n
)  =  (  seq M (  +  ,  F ) `  N
) )
681, 4, 6, 31, 67climconst 11231 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    \ cdif 3113    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  summodclem2a  11322  fsum3cvg2  11335
  Copyright terms: Public domain W3C validator