ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg Unicode version

Theorem fsum3cvg 11179
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isummo.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fisumcvg.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsum3cvg  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, N    ph, k    k, M   
k, F
Allowed substitution hint:    B( k)

Proof of Theorem fsum3cvg
Dummy variables  n  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 isumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 9359 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
5 seqex 10251 . . 3  |-  seq M
(  +  ,  F
)  e.  _V
65a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  F )  e. 
_V )
7 eqid 2140 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 9355 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
92, 8syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9359 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1110adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ZZ )
12 iftrue 3484 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
1312adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
14 isummo.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1513, 14eqeltrd 2217 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1615ex 114 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
18 iffalse 3487 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
19 0cn 7782 . . . . . . . . 9  |-  0  e.  CC
2018, 19eqeltrdi 2231 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
22 isummo.dc . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
23 exmiddc 822 . . . . . . . 8  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2422, 23syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
2517, 21, 24mpjaod 708 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
26 isummo.1 . . . . . . 7  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
2726fvmpt2 5512 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
2811, 25, 27syl2anc 409 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
2928, 25eqeltrd 2217 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
307, 9, 29serf 10278 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> CC )
3130, 2ffvelrnd 5564 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
32 addid1 7924 . . . . 5  |-  ( m  e.  CC  ->  (
m  +  0 )  =  m )
3332adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  CC )  ->  ( m  +  0 )  =  m )
342adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
35 simpr 109 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  n  e.  ( ZZ>= `  N )
)
3631adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
37 elfzuz 9833 . . . . . 6  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
38 eluzelz 9359 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  m  e.  ZZ )
3938adantl 275 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ZZ )
40 fisumcvg.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( M ... N ) )
4140sseld 3101 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  A  ->  m  e.  ( M ... N ) ) )
42 fznuz 9913 . . . . . . . . . . 11  |-  ( m  e.  ( M ... N )  ->  -.  m  e.  ( ZZ>= `  ( N  +  1
) ) )
4341, 42syl6 33 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  A  ->  -.  m  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
4443con2d 614 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( N  + 
1 ) )  ->  -.  m  e.  A
) )
4544imp 123 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  m  e.  A )
4639, 45eldifd 3086 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ( ZZ  \  A ) )
47 fveqeq2 5438 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  =  0  <->  ( F `  m )  =  0 ) )
48 eldifi 3203 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
49 eldifn 3204 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
5049, 18syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
5150, 19eqeltrdi 2231 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
5248, 51, 27syl2anc 409 . . . . . . . . 9  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
5352, 50eqtrd 2173 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  0 )
5447, 53vtoclga 2755 . . . . . . 7  |-  ( m  e.  ( ZZ  \  A )  ->  ( F `  m )  =  0 )
5546, 54syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  m )  =  0 )
5637, 55sylan2 284 . . . . 5  |-  ( (
ph  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
5756adantlr 469 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
58 fveq2 5429 . . . . . 6  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
5958eleq1d 2209 . . . . 5  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
6029ralrimiva 2508 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
6160ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  e.  CC )
62 simpr 109 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  m  e.  ( ZZ>= `  M )
)
6359, 61, 62rspcdva 2798 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ZZ>= `  M )
)  ->  ( F `  m )  e.  CC )
64 addcl 7769 . . . . 5  |-  ( ( m  e.  CC  /\  z  e.  CC )  ->  ( m  +  z )  e.  CC )
6564adantl 275 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  ( m  e.  CC  /\  z  e.  CC ) )  -> 
( m  +  z )  e.  CC )
6633, 34, 35, 36, 57, 63, 65seq3id2 10313 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  =  (  seq M (  +  ,  F ) `  n
) )
6766eqcomd 2146 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  n
)  =  (  seq M (  +  ,  F ) `  N
) )
681, 4, 6, 31, 67climconst 11091 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   A.wral 2417   _Vcvv 2689    \ cdif 3073    C_ wss 3076   ifcif 3479   class class class wbr 3937    |-> cmpt 3997   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  summodclem2a  11182  fsum3cvg2  11195
  Copyright terms: Public domain W3C validator