ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid Unicode version

Theorem addrid 8192
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8015 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175  (class class class)co 5934   CCcc 7905   0cc0 7907    + caddc 7910
This theorem was proved from axioms:  ax-0id 8015
This theorem is referenced by:  addlid  8193  00id  8195  addridi  8196  addridd  8203  addcan2  8235  subid  8273  subid1  8274  addid0  8427  shftval3  11057  reim0  11091  fsum3cvg  11608  summodclem2a  11611
  Copyright terms: Public domain W3C validator