ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid Unicode version

Theorem addrid 8159
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 7982 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877
This theorem was proved from axioms:  ax-0id 7982
This theorem is referenced by:  addlid  8160  00id  8162  addid1i  8163  addridd  8170  addcan2  8202  subid  8240  subid1  8241  addid0  8394  shftval3  10974  reim0  11008  fsum3cvg  11524  summodclem2a  11527
  Copyright terms: Public domain W3C validator