ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid Unicode version

Theorem addrid 8280
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8103 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   0cc0 7995    + caddc 7998
This theorem was proved from axioms:  ax-0id 8103
This theorem is referenced by:  addlid  8281  00id  8283  addridi  8284  addridd  8291  addcan2  8323  subid  8361  subid1  8362  addid0  8515  swrdccat3blem  11266  shftval3  11333  reim0  11367  fsum3cvg  11884  summodclem2a  11887
  Copyright terms: Public domain W3C validator