ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8292
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8115 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6007  cc 8005  0cc0 8007   + caddc 8010
This theorem was proved from axioms:  ax-0id 8115
This theorem is referenced by:  addlid  8293  00id  8295  addridi  8296  addridd  8303  addcan2  8335  subid  8373  subid1  8374  addid0  8527  swrdccat3blem  11279  shftval3  11346  reim0  11380  fsum3cvg  11897  summodclem2a  11900
  Copyright terms: Public domain W3C validator