ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8159
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 7982 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872  0cc0 7874   + caddc 7877
This theorem was proved from axioms:  ax-0id 7982
This theorem is referenced by:  addlid  8160  00id  8162  addid1i  8163  addridd  8170  addcan2  8202  subid  8240  subid1  8241  addid0  8394  shftval3  10974  reim0  11008  fsum3cvg  11524  summodclem2a  11527
  Copyright terms: Public domain W3C validator