ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8126
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 7950 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  (class class class)co 5897  cc 7840  0cc0 7842   + caddc 7845
This theorem was proved from axioms:  ax-0id 7950
This theorem is referenced by:  addlid  8127  00id  8129  addid1i  8130  addridd  8137  addcan2  8169  subid  8207  subid1  8208  addid0  8361  shftval3  10871  reim0  10905  fsum3cvg  11421  summodclem2a  11424
  Copyright terms: Public domain W3C validator