| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 8040 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 + caddc 7935 |
| This theorem was proved from axioms: ax-0id 8040 |
| This theorem is referenced by: addlid 8218 00id 8220 addridi 8221 addridd 8228 addcan2 8260 subid 8298 subid1 8299 addid0 8452 shftval3 11182 reim0 11216 fsum3cvg 11733 summodclem2a 11736 |
| Copyright terms: Public domain | W3C validator |