![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addrid | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7980 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 0cc0 7872 + caddc 7875 |
This theorem was proved from axioms: ax-0id 7980 |
This theorem is referenced by: addlid 8158 00id 8160 addid1i 8161 addridd 8168 addcan2 8200 subid 8238 subid1 8239 addid0 8392 shftval3 10971 reim0 11005 fsum3cvg 11521 summodclem2a 11524 |
Copyright terms: Public domain | W3C validator |