| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 8115 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-0id 8115 |
| This theorem is referenced by: addlid 8293 00id 8295 addridi 8296 addridd 8303 addcan2 8335 subid 8373 subid1 8374 addid0 8527 swrdccat3blem 11279 shftval3 11346 reim0 11380 fsum3cvg 11897 summodclem2a 11900 |
| Copyright terms: Public domain | W3C validator |