| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 8006 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-0id 8006 |
| This theorem is referenced by: addlid 8184 00id 8186 addridi 8187 addridd 8194 addcan2 8226 subid 8264 subid1 8265 addid0 8418 shftval3 11011 reim0 11045 fsum3cvg 11562 summodclem2a 11565 |
| Copyright terms: Public domain | W3C validator |