ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8252
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8075 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965  0cc0 7967   + caddc 7970
This theorem was proved from axioms:  ax-0id 8075
This theorem is referenced by:  addlid  8253  00id  8255  addridi  8256  addridd  8263  addcan2  8295  subid  8333  subid1  8334  addid0  8487  swrdccat3blem  11237  shftval3  11304  reim0  11338  fsum3cvg  11855  summodclem2a  11858
  Copyright terms: Public domain W3C validator