ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8157
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 7980 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875
This theorem was proved from axioms:  ax-0id 7980
This theorem is referenced by:  addlid  8158  00id  8160  addid1i  8161  addridd  8168  addcan2  8200  subid  8238  subid1  8239  addid0  8392  shftval3  10971  reim0  11005  fsum3cvg  11521  summodclem2a  11524
  Copyright terms: Public domain W3C validator