ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8183
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8006 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896  0cc0 7898   + caddc 7901
This theorem was proved from axioms:  ax-0id 8006
This theorem is referenced by:  addlid  8184  00id  8186  addridi  8187  addridd  8194  addcan2  8226  subid  8264  subid1  8265  addid0  8418  shftval3  11011  reim0  11045  fsum3cvg  11562  summodclem2a  11565
  Copyright terms: Public domain W3C validator