| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 8075 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-0id 8075 |
| This theorem is referenced by: addlid 8253 00id 8255 addridi 8256 addridd 8263 addcan2 8295 subid 8333 subid1 8334 addid0 8487 swrdccat3blem 11237 shftval3 11304 reim0 11338 fsum3cvg 11855 summodclem2a 11858 |
| Copyright terms: Public domain | W3C validator |