![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addrid | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7950 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 (class class class)co 5897 ℂcc 7840 0cc0 7842 + caddc 7845 |
This theorem was proved from axioms: ax-0id 7950 |
This theorem is referenced by: addlid 8127 00id 8129 addid1i 8130 addridd 8137 addcan2 8169 subid 8207 subid1 8208 addid0 8361 shftval3 10871 reim0 10905 fsum3cvg 11421 summodclem2a 11424 |
Copyright terms: Public domain | W3C validator |