| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 8004 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 0cc0 7896 + caddc 7899 |
| This theorem was proved from axioms: ax-0id 8004 |
| This theorem is referenced by: addlid 8182 00id 8184 addridi 8185 addridd 8192 addcan2 8224 subid 8262 subid1 8263 addid0 8416 shftval3 11009 reim0 11043 fsum3cvg 11560 summodclem2a 11563 |
| Copyright terms: Public domain | W3C validator |