| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addrid | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 7987 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 |
| This theorem was proved from axioms: ax-0id 7987 |
| This theorem is referenced by: addlid 8165 00id 8167 addridi 8168 addridd 8175 addcan2 8207 subid 8245 subid1 8246 addid0 8399 shftval3 10992 reim0 11026 fsum3cvg 11543 summodclem2a 11546 |
| Copyright terms: Public domain | W3C validator |