![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addrid | GIF version |
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
Ref | Expression |
---|---|
addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0id 7982 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 0cc0 7874 + caddc 7877 |
This theorem was proved from axioms: ax-0id 7982 |
This theorem is referenced by: addlid 8160 00id 8162 addid1i 8163 addridd 8170 addcan2 8202 subid 8240 subid1 8241 addid0 8394 shftval3 10974 reim0 11008 fsum3cvg 11524 summodclem2a 11527 |
Copyright terms: Public domain | W3C validator |