ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addrid GIF version

Theorem addrid 8217
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
StepHypRef Expression
1 ax-0id 8040 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930  0cc0 7932   + caddc 7935
This theorem was proved from axioms:  ax-0id 8040
This theorem is referenced by:  addlid  8218  00id  8220  addridi  8221  addridd  8228  addcan2  8260  subid  8298  subid1  8299  addid0  8452  shftval3  11182  reim0  11216  fsum3cvg  11733  summodclem2a  11736
  Copyright terms: Public domain W3C validator