| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| muld.1 |
|
| Ref | Expression |
|---|---|
| addridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addrid 8280 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8103 |
| This theorem is referenced by: subsub2 8370 negsub 8390 ltaddneg 8567 ltaddpos 8595 addge01 8615 add20 8617 apreap 8730 nnge1 9129 nnnn0addcl 9395 un0addcl 9398 peano2z 9478 zaddcl 9482 uzaddcl 9777 xaddid1 10054 fzosubel3 10397 expadd 10798 faclbnd6 10961 omgadd 11019 ccatrid 11137 pfxmpt 11207 pfxfv 11211 pfxswrd 11233 pfxccatin12lem1 11255 pfxccatin12lem2 11258 swrdccat3blem 11266 reim0b 11368 rereb 11369 immul2 11386 resqrexlemcalc3 11522 resqrexlemnm 11524 max0addsup 11725 fsumsplit 11913 sumsplitdc 11938 bitsinv1lem 12467 bezoutlema 12515 pcadd 12858 pcadd2 12859 pcmpt 12861 mulgnn0dir 13684 cosmpi 15484 sinppi 15485 sinhalfpip 15488 trilpolemlt1 16368 |
| Copyright terms: Public domain | W3C validator |