![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addridd | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addridd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addrid 8159 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7982 |
This theorem is referenced by: subsub2 8249 negsub 8269 ltaddneg 8445 ltaddpos 8473 addge01 8493 add20 8495 apreap 8608 nnge1 9007 nnnn0addcl 9273 un0addcl 9276 peano2z 9356 zaddcl 9360 uzaddcl 9654 xaddid1 9931 fzosubel3 10266 expadd 10655 faclbnd6 10818 omgadd 10876 reim0b 11009 rereb 11010 immul2 11027 resqrexlemcalc3 11163 resqrexlemnm 11165 max0addsup 11366 fsumsplit 11553 sumsplitdc 11578 bezoutlema 12139 pcadd 12481 pcadd2 12482 pcmpt 12484 mulgnn0dir 13225 cosmpi 14992 sinppi 14993 sinhalfpip 14996 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |