| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| muld.1 |
|
| Ref | Expression |
|---|---|
| addridd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addrid 8192 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8015 |
| This theorem is referenced by: subsub2 8282 negsub 8302 ltaddneg 8479 ltaddpos 8507 addge01 8527 add20 8529 apreap 8642 nnge1 9041 nnnn0addcl 9307 un0addcl 9310 peano2z 9390 zaddcl 9394 uzaddcl 9689 xaddid1 9966 fzosubel3 10306 expadd 10707 faclbnd6 10870 omgadd 10928 ccatrid 11038 reim0b 11092 rereb 11093 immul2 11110 resqrexlemcalc3 11246 resqrexlemnm 11248 max0addsup 11449 fsumsplit 11637 sumsplitdc 11662 bitsinv1lem 12191 bezoutlema 12239 pcadd 12582 pcadd2 12583 pcmpt 12585 mulgnn0dir 13406 cosmpi 15206 sinppi 15207 sinhalfpip 15210 trilpolemlt1 15844 |
| Copyright terms: Public domain | W3C validator |