![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addridd | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addridd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addrid 8126 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7950 |
This theorem is referenced by: subsub2 8216 negsub 8236 ltaddneg 8412 ltaddpos 8440 addge01 8460 add20 8462 apreap 8575 nnge1 8973 nnnn0addcl 9237 un0addcl 9240 peano2z 9320 zaddcl 9324 uzaddcl 9618 xaddid1 9894 fzosubel3 10228 expadd 10596 faclbnd6 10759 omgadd 10817 reim0b 10906 rereb 10907 immul2 10924 resqrexlemcalc3 11060 resqrexlemnm 11062 max0addsup 11263 fsumsplit 11450 sumsplitdc 11475 bezoutlema 12035 pcadd 12375 pcadd2 12376 pcmpt 12378 mulgnn0dir 13109 cosmpi 14714 sinppi 14715 sinhalfpip 14718 trilpolemlt1 15268 |
Copyright terms: Public domain | W3C validator |