![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addridd | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addridd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addrid 8157 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7980 |
This theorem is referenced by: subsub2 8247 negsub 8267 ltaddneg 8443 ltaddpos 8471 addge01 8491 add20 8493 apreap 8606 nnge1 9005 nnnn0addcl 9270 un0addcl 9273 peano2z 9353 zaddcl 9357 uzaddcl 9651 xaddid1 9928 fzosubel3 10263 expadd 10652 faclbnd6 10815 omgadd 10873 reim0b 11006 rereb 11007 immul2 11024 resqrexlemcalc3 11160 resqrexlemnm 11162 max0addsup 11363 fsumsplit 11550 sumsplitdc 11575 bezoutlema 12136 pcadd 12478 pcadd2 12479 pcmpt 12481 mulgnn0dir 13222 cosmpi 14951 sinppi 14952 sinhalfpip 14955 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |