ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addridi Unicode version

Theorem addridi 8296
Description:  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addridi  |-  ( A  +  0 )  =  A

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addrid 8292 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
31, 2ax-mp 5 1  |-  ( A  +  0 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6007   CCcc 8005   0cc0 8007    + caddc 8010
This theorem was proved from axioms:  ax-mp 5  ax-0id 8115
This theorem is referenced by:  1p0e1  9234  9p1e10  9588  num0u  9596  numnncl2  9608  decrmanc  9642  decaddi  9645  decaddci  9646  decmul1  9649  decmulnc  9652  fsumrelem  11992  demoivreALT  12295  decsplit0  12960  sinhalfpilem  15475  efipi  15485
  Copyright terms: Public domain W3C validator