ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addridi Unicode version

Theorem addridi 8185
Description:  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addridi  |-  ( A  +  0 )  =  A

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addrid 8181 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
31, 2ax-mp 5 1  |-  ( A  +  0 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   0cc0 7896    + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-0id 8004
This theorem is referenced by:  1p0e1  9123  9p1e10  9476  num0u  9484  numnncl2  9496  decrmanc  9530  decaddi  9533  decaddci  9534  decmul1  9537  decmulnc  9540  fsumrelem  11653  demoivreALT  11956  decsplit0  12621  sinhalfpilem  15111  efipi  15121
  Copyright terms: Public domain W3C validator