ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrimdv Unicode version

Theorem alrimdv 1869
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
alrimdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
alrimdv  |-  ( ph  ->  ( ps  ->  A. x ch ) )
Distinct variable groups:    ph, x    ps, x
Allowed substitution hint:    ch( x)

Proof of Theorem alrimdv
StepHypRef Expression
1 ax-17 1519 . 2  |-  ( ph  ->  A. x ph )
2 ax-17 1519 . 2  |-  ( ps 
->  A. x ps )
3 alrimdv.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 2, 3alrimdh 1472 1  |-  ( ph  ->  ( ps  ->  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1440  ax-gen 1442  ax-17 1519
This theorem is referenced by:  exmidsssnc  4189  funcnvuni  5267  fliftfun  5775  findcard  6866  findcard2  6867  findcard2s  6868  genprndl  7483  genprndu  7484  bj-inf2vnlem2  14006
  Copyright terms: Public domain W3C validator