Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem2 Unicode version

Theorem bj-inf2vnlem2 11523
Description: Lemma for bj-inf2vnlem3 11524 and bj-inf2vnlem4 11525. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem2  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. u
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
) ) )
Distinct variable groups:    x, y, t, u, A    x, Z, y, t, u

Proof of Theorem bj-inf2vnlem2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2094 . . . . . . 7  |-  ( x  =  u  ->  (
x  =  (/)  <->  u  =  (/) ) )
2 eqeq1 2094 . . . . . . . 8  |-  ( x  =  u  ->  (
x  =  suc  y  <->  u  =  suc  y ) )
32rexbidv 2381 . . . . . . 7  |-  ( x  =  u  ->  ( E. y  e.  A  x  =  suc  y  <->  E. y  e.  A  u  =  suc  y ) )
41, 3orbi12d 742 . . . . . 6  |-  ( x  =  u  ->  (
( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  <-> 
( u  =  (/)  \/ 
E. y  e.  A  u  =  suc  y ) ) )
54rspcv 2718 . . . . 5  |-  ( u  e.  A  ->  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
( u  =  (/)  \/ 
E. y  e.  A  u  =  suc  y ) ) )
6 df-bj-ind 11479 . . . . . . . . 9  |-  (Ind  Z  <->  (
(/)  e.  Z  /\  A. v  e.  Z  suc  v  e.  Z )
)
76simplbi 268 . . . . . . . 8  |-  (Ind  Z  -> 
(/)  e.  Z )
8 eleq1 2150 . . . . . . . 8  |-  ( u  =  (/)  ->  ( u  e.  Z  <->  (/)  e.  Z
) )
97, 8syl5ibr 154 . . . . . . 7  |-  ( u  =  (/)  ->  (Ind  Z  ->  u  e.  Z ) )
109a1dd 47 . . . . . 6  |-  ( u  =  (/)  ->  (Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z ) ) )
11 vex 2622 . . . . . . . . . 10  |-  y  e. 
_V
1211sucid 4235 . . . . . . . . 9  |-  y  e. 
suc  y
13 eleq2 2151 . . . . . . . . . 10  |-  ( suc  y  =  u  -> 
( y  e.  suc  y 
<->  y  e.  u ) )
1413eqcoms 2091 . . . . . . . . 9  |-  ( u  =  suc  y  -> 
( y  e.  suc  y 
<->  y  e.  u ) )
1512, 14mpbii 146 . . . . . . . 8  |-  ( u  =  suc  y  -> 
y  e.  u )
16 eleq1 2150 . . . . . . . . . . . . 13  |-  ( t  =  y  ->  (
t  e.  A  <->  y  e.  A ) )
17 eleq1 2150 . . . . . . . . . . . . 13  |-  ( t  =  y  ->  (
t  e.  Z  <->  y  e.  Z ) )
1816, 17imbi12d 232 . . . . . . . . . . . 12  |-  ( t  =  y  ->  (
( t  e.  A  ->  t  e.  Z )  <-> 
( y  e.  A  ->  y  e.  Z ) ) )
1918rspcv 2718 . . . . . . . . . . 11  |-  ( y  e.  u  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  ( y  e.  A  ->  y  e.  Z ) ) )
20 bj-indsuc 11480 . . . . . . . . . . . 12  |-  (Ind  Z  ->  ( y  e.  Z  ->  suc  y  e.  Z
) )
21 eleq1a 2159 . . . . . . . . . . . 12  |-  ( suc  y  e.  Z  -> 
( u  =  suc  y  ->  u  e.  Z
) )
2220, 21syl6com 35 . . . . . . . . . . 11  |-  ( y  e.  Z  ->  (Ind  Z  ->  ( u  =  suc  y  ->  u  e.  Z ) ) )
2319, 22syl8 70 . . . . . . . . . 10  |-  ( y  e.  u  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  ( y  e.  A  ->  (Ind  Z  ->  ( u  =  suc  y  ->  u  e.  Z
) ) ) ) )
2423com13 79 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  ( y  e.  u  ->  (Ind  Z  ->  ( u  =  suc  y  ->  u  e.  Z
) ) ) ) )
2524com25 90 . . . . . . . 8  |-  ( y  e.  A  ->  (
u  =  suc  y  ->  ( y  e.  u  ->  (Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z
) ) ) ) )
2615, 25mpdi 42 . . . . . . 7  |-  ( y  e.  A  ->  (
u  =  suc  y  ->  (Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z
) ) ) )
2726rexlimiv 2483 . . . . . 6  |-  ( E. y  e.  A  u  =  suc  y  -> 
(Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z
) ) )
2810, 27jaoi 671 . . . . 5  |-  ( ( u  =  (/)  \/  E. y  e.  A  u  =  suc  y )  -> 
(Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z
) ) )
295, 28syl6 33 . . . 4  |-  ( u  e.  A  ->  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z
) ) ) )
3029com3l 80 . . 3  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  (
u  e.  A  -> 
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z ) ) ) )
3130alrimdv 1804 . 2  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. u
( u  e.  A  ->  ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z ) ) ) )
32 bi2.04 246 . . 3  |-  ( ( u  e.  A  -> 
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  u  e.  Z ) )  <->  ( A. t  e.  u  (
t  e.  A  -> 
t  e.  Z )  ->  ( u  e.  A  ->  u  e.  Z ) ) )
3332albii 1404 . 2  |-  ( A. u ( u  e.  A  ->  ( A. t  e.  u  (
t  e.  A  -> 
t  e.  Z )  ->  u  e.  Z
) )  <->  A. u
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
) )
3431, 33syl6ib 159 1  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. u
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    \/ wo 664   A.wal 1287    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   (/)c0 3284   suc csuc 4183  Ind wind 11478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-sn 3447  df-suc 4189  df-bj-ind 11479
This theorem is referenced by:  bj-inf2vnlem3  11524  bj-inf2vnlem4  11525
  Copyright terms: Public domain W3C validator