| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem2 | Unicode version | ||
| Description: Lemma for bj-inf2vnlem3 15618 and bj-inf2vnlem4 15619. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-inf2vnlem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | 
. . . . . . 7
 | |
| 2 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 3 | 2 | rexbidv 2498 | 
. . . . . . 7
 | 
| 4 | 1, 3 | orbi12d 794 | 
. . . . . 6
 | 
| 5 | 4 | rspcv 2864 | 
. . . . 5
 | 
| 6 | df-bj-ind 15573 | 
. . . . . . . . 9
 | |
| 7 | 6 | simplbi 274 | 
. . . . . . . 8
 | 
| 8 | eleq1 2259 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | imbitrrid 156 | 
. . . . . . 7
 | 
| 10 | 9 | a1dd 48 | 
. . . . . 6
 | 
| 11 | vex 2766 | 
. . . . . . . . . 10
 | |
| 12 | 11 | sucid 4452 | 
. . . . . . . . 9
 | 
| 13 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 14 | 13 | eqcoms 2199 | 
. . . . . . . . 9
 | 
| 15 | 12, 14 | mpbii 148 | 
. . . . . . . 8
 | 
| 16 | eleq1 2259 | 
. . . . . . . . . . . . 13
 | |
| 17 | eleq1 2259 | 
. . . . . . . . . . . . 13
 | |
| 18 | 16, 17 | imbi12d 234 | 
. . . . . . . . . . . 12
 | 
| 19 | 18 | rspcv 2864 | 
. . . . . . . . . . 11
 | 
| 20 | bj-indsuc 15574 | 
. . . . . . . . . . . 12
 | |
| 21 | eleq1a 2268 | 
. . . . . . . . . . . 12
 | |
| 22 | 20, 21 | syl6com 35 | 
. . . . . . . . . . 11
 | 
| 23 | 19, 22 | syl8 71 | 
. . . . . . . . . 10
 | 
| 24 | 23 | com13 80 | 
. . . . . . . . 9
 | 
| 25 | 24 | com25 91 | 
. . . . . . . 8
 | 
| 26 | 15, 25 | mpdi 43 | 
. . . . . . 7
 | 
| 27 | 26 | rexlimiv 2608 | 
. . . . . 6
 | 
| 28 | 10, 27 | jaoi 717 | 
. . . . 5
 | 
| 29 | 5, 28 | syl6 33 | 
. . . 4
 | 
| 30 | 29 | com3l 81 | 
. . 3
 | 
| 31 | 30 | alrimdv 1890 | 
. 2
 | 
| 32 | bi2.04 248 | 
. . 3
 | |
| 33 | 32 | albii 1484 | 
. 2
 | 
| 34 | 31, 33 | imbitrdi 161 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-suc 4406 df-bj-ind 15573 | 
| This theorem is referenced by: bj-inf2vnlem3 15618 bj-inf2vnlem4 15619 | 
| Copyright terms: Public domain | W3C validator |