ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrimivv Unicode version

Theorem alrimivv 1898
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
alrimivv.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
alrimivv  |-  ( ph  ->  A. x A. y ps )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem alrimivv
StepHypRef Expression
1 alrimivv.1 . . 3  |-  ( ph  ->  ps )
21alrimiv 1897 . 2  |-  ( ph  ->  A. y ps )
32alrimiv 1897 1  |-  ( ph  ->  A. x A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1470  ax-gen 1472  ax-17 1549
This theorem is referenced by:  2ax17  1901  euind  2960  sbnfc2  3154  exmidsssn  4247  exmidel  4250  exmidundif  4251  exmidundifim  4252  ssopab2dv  4326  suctr  4469  eusvnf  4501  ordsuc  4612  ssrel  4764  relssdv  4768  eqrelrdv  4772  eqbrrdv  4773  eqrelrdv2  4775  ssrelrel  4776  iss  5006  funssres  5314  funun  5316  fununi  5343  fsn  5754  ovg  6087  caovimo  6142  oprabexd  6214  qliftfund  6707  eroveu  6715  th3qlem1  6726  exmidfodomrlemim  7311  exmidmotap  7375  addnq0mo  7562  mulnq0mo  7563  ltexprlemdisj  7721  recexprlemdisj  7745  addsrmo  7858  mulsrmo  7859  seqf1og  10668  summodc  11727  prodmodc  11922  pceu  12651  rhmex  13952  limcimo  15170  exmidsbth  16000
  Copyright terms: Public domain W3C validator