ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard Unicode version

Theorem findcard 6920
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard.2  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
findcard.3  |-  ( x  =  y  ->  ( ph 
<->  th ) )
findcard.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard.5  |-  ps
findcard.6  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
Assertion
Ref Expression
findcard  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, y, z, A    ps, x    ch, x    th, x    ta, x    ph, y, z
Allowed substitution hints:    ph( x)    ps( y,
z)    ch( y, z)    th( y,
z)    ta( y, z)

Proof of Theorem findcard
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 6791 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 4025 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 231 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1835 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 4025 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 231 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1835 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 4025 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 231 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1835 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 6825 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard.5 . . . . . . . . 9  |-  ps
14 findcard.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 168 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 121 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1460 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 peano2 4615 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  suc  v  e.  om )
19 breq2 4025 . . . . . . . . . . . . . 14  |-  ( w  =  suc  v  -> 
( y  ~~  w  <->  y 
~~  suc  v )
)
2019rspcev 2856 . . . . . . . . . . . . 13  |-  ( ( suc  v  e.  om  /\  y  ~~  suc  v
)  ->  E. w  e.  om  y  ~~  w
)
2118, 20sylan 283 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  E. w  e.  om  y  ~~  w )
22 isfi 6791 . . . . . . . . . . . 12  |-  ( y  e.  Fin  <->  E. w  e.  om  y  ~~  w
)
2321, 22sylibr 134 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  y  e.  Fin )
24233adant2 1018 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  -> 
y  e.  Fin )
25 dif1en 6911 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  y  ~~  suc  v  /\  z  e.  y )  ->  ( y  \  {
z } )  ~~  v )
26253expa 1205 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  (
y  \  { z } )  ~~  v
)
27 vex 2755 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
28 difexg 4162 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  _V  ->  (
y  \  { z } )  e.  _V )
2927, 28ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( y 
\  { z } )  e.  _V
30 breq1 4024 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( x  ~~  v 
<->  ( y  \  {
z } )  ~~  v ) )
31 findcard.2 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
3230, 31imbi12d 234 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  \  { z } )  ->  ( ( x 
~~  v  ->  ph )  <->  ( ( y  \  {
z } )  ~~  v  ->  ch ) ) )
3329, 32spcv 2846 . . . . . . . . . . . . . . 15  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
( y  \  {
z } )  ~~  v  ->  ch ) )
3426, 33syl5com 29 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  ch ) )
3534ralrimdva 2570 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  ( A. x
( x  ~~  v  ->  ph )  ->  A. z  e.  y  ch )
)
3635imp 124 . . . . . . . . . . . 12  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  A. x
( x  ~~  v  ->  ph ) )  ->  A. z  e.  y  ch )
3736an32s 568 . . . . . . . . . . 11  |-  ( ( ( v  e.  om  /\ 
A. x ( x 
~~  v  ->  ph )
)  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
38373impa 1196 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
39 findcard.6 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
4024, 38, 39sylc 62 . . . . . . . . 9  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  th )
41403exp 1204 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  suc  v  ->  th ) ) )
4241alrimdv 1887 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. y
( y  ~~  suc  v  ->  th ) ) )
43 breq1 4024 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  ~~  suc  v  <->  y  ~~  suc  v ) )
44 findcard.3 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  th ) )
4543, 44imbi12d 234 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( y  ~~  suc  v  ->  th )
) )
4645cbvalv 1929 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. y ( y  ~~  suc  v  ->  th )
)
4742, 46imbitrrdi 162 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
485, 8, 11, 17, 47finds1 4622 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
494819.21bi 1569 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
5049rexlimiv 2601 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
512, 50sylbi 121 . 2  |-  ( x  e.  Fin  ->  ph )
521, 51vtoclga 2818 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   _Vcvv 2752    \ cdif 3141   (/)c0 3437   {csn 3610   class class class wbr 4021   suc csuc 4386   omcom 4610    ~~ cen 6768   Fincfn 6770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-er 6563  df-en 6771  df-fin 6773
This theorem is referenced by:  xpfi  6962
  Copyright terms: Public domain W3C validator