| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidsssnc | Unicode version | ||
| Description: Excluded middle in terms
of subsets of a singleton.  This is similar to
       exmid01 4231 but lets you choose any set as the element of
the singleton
       rather than just  | 
| Ref | Expression | 
|---|---|
| exmidsssnc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmidsssn 4235 | 
. . . 4
 | |
| 2 | sneq 3633 | 
. . . . . . . 8
 | |
| 3 | 2 | sseq2d 3213 | 
. . . . . . 7
 | 
| 4 | 2 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 5 | 4 | orbi2d 791 | 
. . . . . . 7
 | 
| 6 | 3, 5 | bibi12d 235 | 
. . . . . 6
 | 
| 7 | 6 | spcgv 2851 | 
. . . . 5
 | 
| 8 | 7 | alimdv 1893 | 
. . . 4
 | 
| 9 | 1, 8 | biimtrid 152 | 
. . 3
 | 
| 10 | biimp 118 | 
. . . 4
 | |
| 11 | 10 | alimi 1469 | 
. . 3
 | 
| 12 | 9, 11 | syl6 33 | 
. 2
 | 
| 13 | ssrab2 3268 | 
. . . . . . . . 9
 | |
| 14 | snexg 4217 | 
. . . . . . . . . 10
 | |
| 15 | rabexg 4176 | 
. . . . . . . . . 10
 | |
| 16 | sseq1 3206 | 
. . . . . . . . . . . 12
 | |
| 17 | eqeq1 2203 | 
. . . . . . . . . . . . 13
 | |
| 18 | eqeq1 2203 | 
. . . . . . . . . . . . 13
 | |
| 19 | 17, 18 | orbi12d 794 | 
. . . . . . . . . . . 12
 | 
| 20 | 16, 19 | imbi12d 234 | 
. . . . . . . . . . 11
 | 
| 21 | 20 | spcgv 2851 | 
. . . . . . . . . 10
 | 
| 22 | 14, 15, 21 | 3syl 17 | 
. . . . . . . . 9
 | 
| 23 | 13, 22 | mpii 44 | 
. . . . . . . 8
 | 
| 24 | rabeq0 3480 | 
. . . . . . . . . . 11
 | |
| 25 | snmg 3740 | 
. . . . . . . . . . . 12
 | |
| 26 | r19.3rmv 3541 | 
. . . . . . . . . . . 12
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . . . . . 11
 | 
| 28 | 24, 27 | bitr4id 199 | 
. . . . . . . . . 10
 | 
| 29 | 28 | biimpd 144 | 
. . . . . . . . 9
 | 
| 30 | snidg 3651 | 
. . . . . . . . . . . . 13
 | |
| 31 | 30 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 32 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 33 | 31, 32 | eleqtrrd 2276 | 
. . . . . . . . . . 11
 | 
| 34 | biidd 172 | 
. . . . . . . . . . . . 13
 | |
| 35 | 34 | elrab 2920 | 
. . . . . . . . . . . 12
 | 
| 36 | 35 | simprbi 275 | 
. . . . . . . . . . 11
 | 
| 37 | 33, 36 | syl 14 | 
. . . . . . . . . 10
 | 
| 38 | 37 | ex 115 | 
. . . . . . . . 9
 | 
| 39 | 29, 38 | orim12d 787 | 
. . . . . . . 8
 | 
| 40 | 23, 39 | syld 45 | 
. . . . . . 7
 | 
| 41 | orcom 729 | 
. . . . . . 7
 | |
| 42 | 40, 41 | imbitrdi 161 | 
. . . . . 6
 | 
| 43 | df-dc 836 | 
. . . . . 6
 | |
| 44 | 42, 43 | imbitrrdi 162 | 
. . . . 5
 | 
| 45 | 44 | a1dd 48 | 
. . . 4
 | 
| 46 | 45 | alrimdv 1890 | 
. . 3
 | 
| 47 | df-exmid 4228 | 
. . 3
 | |
| 48 | 46, 47 | imbitrrdi 162 | 
. 2
 | 
| 49 | 12, 48 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-exmid 4228 | 
| This theorem is referenced by: exmidunben 12643 | 
| Copyright terms: Public domain | W3C validator |