ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssnc Unicode version

Theorem exmidsssnc 4182
Description: Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4177 but lets you choose any set as the element of the singleton rather than just  (/). It is similar to exmidsssn 4181 but for a particular set  B rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidsssnc  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Distinct variable groups:    x, B    x, V

Proof of Theorem exmidsssnc
Dummy variables  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidsssn 4181 . . . 4  |-  (EXMID  <->  A. x A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) ) )
2 sneq 3587 . . . . . . . 8  |-  ( u  =  B  ->  { u }  =  { B } )
32sseq2d 3172 . . . . . . 7  |-  ( u  =  B  ->  (
x  C_  { u } 
<->  x  C_  { B } ) )
42eqeq2d 2177 . . . . . . . 8  |-  ( u  =  B  ->  (
x  =  { u } 
<->  x  =  { B } ) )
54orbi2d 780 . . . . . . 7  |-  ( u  =  B  ->  (
( x  =  (/)  \/  x  =  { u } )  <->  ( x  =  (/)  \/  x  =  { B } ) ) )
63, 5bibi12d 234 . . . . . 6  |-  ( u  =  B  ->  (
( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  <->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
76spcgv 2813 . . . . 5  |-  ( B  e.  V  ->  ( A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) )  ->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
87alimdv 1867 . . . 4  |-  ( B  e.  V  ->  ( A. x A. u ( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
91, 8syl5bi 151 . . 3  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
10 biimp 117 . . . 4  |-  ( ( x  C_  { B } 
<->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
1110alimi 1443 . . 3  |-  ( A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) )  ->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
129, 11syl6 33 . 2  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) ) ) )
13 ssrab2 3227 . . . . . . . . 9  |-  { z  e.  { B }  |  (/)  e.  y } 
C_  { B }
14 snexg 4163 . . . . . . . . . 10  |-  ( B  e.  V  ->  { B }  e.  _V )
15 rabexg 4125 . . . . . . . . . 10  |-  ( { B }  e.  _V  ->  { z  e.  { B }  |  (/)  e.  y }  e.  _V )
16 sseq1 3165 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  C_  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  C_  { B } ) )
17 eqeq1 2172 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  (/)  <->  { z  e.  { B }  |  (/) 
e.  y }  =  (/) ) )
18 eqeq1 2172 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  =  { B } ) )
1917, 18orbi12d 783 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  =  (/)  \/  x  =  { B } )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
2016, 19imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2120spcgv 2813 . . . . . . . . . 10  |-  ( { z  e.  { B }  |  (/)  e.  y }  e.  _V  ->  ( A. x ( x 
C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( { z  e. 
{ B }  |  (/) 
e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) ) )
2214, 15, 213syl 17 . . . . . . . . 9  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2313, 22mpii 44 . . . . . . . 8  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
24 rabeq0 3438 . . . . . . . . . . 11  |-  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  A. z  e.  { B }  -.  (/) 
e.  y )
25 snmg 3694 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  E. w  w  e.  { B } )
26 r19.3rmv 3499 . . . . . . . . . . . 12  |-  ( E. w  w  e.  { B }  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2824, 27bitr4id 198 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  -.  (/)  e.  y ) )
2928biimpd 143 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  ->  -.  (/) 
e.  y ) )
30 snidg 3605 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3130adantr 274 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { B } )
32 simpr 109 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  { z  e.  { B }  |  (/)  e.  y }  =  { B }
)
3331, 32eleqtrrd 2246 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { z  e.  { B }  |  (/)  e.  y } )
34 biidd 171 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( (/) 
e.  y  <->  (/)  e.  y ) )
3534elrab 2882 . . . . . . . . . . . 12  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  <->  ( B  e.  { B }  /\  (/) 
e.  y ) )
3635simprbi 273 . . . . . . . . . . 11  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  ->  (/)  e.  y )
3733, 36syl 14 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  (/)  e.  y )
3837ex 114 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  { B }  ->  (/)  e.  y ) )
3929, 38orim12d 776 . . . . . . . 8  |-  ( B  e.  V  ->  (
( { z  e. 
{ B }  |  (/) 
e.  y }  =  (/) 
\/  { z  e. 
{ B }  |  (/) 
e.  y }  =  { B } )  -> 
( -.  (/)  e.  y  \/  (/)  e.  y ) ) )
4023, 39syld 45 . . . . . . 7  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( -.  (/) 
e.  y  \/  (/)  e.  y ) ) )
41 orcom 718 . . . . . . 7  |-  ( ( -.  (/)  e.  y  \/  (/)  e.  y )  <->  ( (/)  e.  y  \/  -.  (/)  e.  y ) )
4240, 41syl6ib 160 . . . . . 6  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( (/)  e.  y  \/  -.  (/)  e.  y ) ) )
43 df-dc 825 . . . . . 6  |-  (DECID  (/)  e.  y  <-> 
( (/)  e.  y  \/ 
-.  (/)  e.  y ) )
4442, 43syl6ibr 161 . . . . 5  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> DECID  (/)  e.  y ) )
4544a1dd 48 . . . 4  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( y  C_ 
{ (/) }  -> DECID  (/)  e.  y ) ) )
4645alrimdv 1864 . . 3  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) ) )
47 df-exmid 4174 . . 3  |-  (EXMID  <->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) )
4846, 47syl6ibr 161 . 2  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> EXMID ) )
4912, 48impbid 128 1  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   {crab 2448   _Vcvv 2726    C_ wss 3116   (/)c0 3409   {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-exmid 4174
This theorem is referenced by:  exmidunben  12359
  Copyright terms: Public domain W3C validator