ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssnc Unicode version

Theorem exmidsssnc 4189
Description: Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4184 but lets you choose any set as the element of the singleton rather than just  (/). It is similar to exmidsssn 4188 but for a particular set  B rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidsssnc  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Distinct variable groups:    x, B    x, V

Proof of Theorem exmidsssnc
Dummy variables  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidsssn 4188 . . . 4  |-  (EXMID  <->  A. x A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) ) )
2 sneq 3594 . . . . . . . 8  |-  ( u  =  B  ->  { u }  =  { B } )
32sseq2d 3177 . . . . . . 7  |-  ( u  =  B  ->  (
x  C_  { u } 
<->  x  C_  { B } ) )
42eqeq2d 2182 . . . . . . . 8  |-  ( u  =  B  ->  (
x  =  { u } 
<->  x  =  { B } ) )
54orbi2d 785 . . . . . . 7  |-  ( u  =  B  ->  (
( x  =  (/)  \/  x  =  { u } )  <->  ( x  =  (/)  \/  x  =  { B } ) ) )
63, 5bibi12d 234 . . . . . 6  |-  ( u  =  B  ->  (
( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  <->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
76spcgv 2817 . . . . 5  |-  ( B  e.  V  ->  ( A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) )  ->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
87alimdv 1872 . . . 4  |-  ( B  e.  V  ->  ( A. x A. u ( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
91, 8syl5bi 151 . . 3  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
10 biimp 117 . . . 4  |-  ( ( x  C_  { B } 
<->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
1110alimi 1448 . . 3  |-  ( A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) )  ->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
129, 11syl6 33 . 2  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) ) ) )
13 ssrab2 3232 . . . . . . . . 9  |-  { z  e.  { B }  |  (/)  e.  y } 
C_  { B }
14 snexg 4170 . . . . . . . . . 10  |-  ( B  e.  V  ->  { B }  e.  _V )
15 rabexg 4132 . . . . . . . . . 10  |-  ( { B }  e.  _V  ->  { z  e.  { B }  |  (/)  e.  y }  e.  _V )
16 sseq1 3170 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  C_  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  C_  { B } ) )
17 eqeq1 2177 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  (/)  <->  { z  e.  { B }  |  (/) 
e.  y }  =  (/) ) )
18 eqeq1 2177 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  =  { B } ) )
1917, 18orbi12d 788 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  =  (/)  \/  x  =  { B } )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
2016, 19imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2120spcgv 2817 . . . . . . . . . 10  |-  ( { z  e.  { B }  |  (/)  e.  y }  e.  _V  ->  ( A. x ( x 
C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( { z  e. 
{ B }  |  (/) 
e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) ) )
2214, 15, 213syl 17 . . . . . . . . 9  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2313, 22mpii 44 . . . . . . . 8  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
24 rabeq0 3444 . . . . . . . . . . 11  |-  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  A. z  e.  { B }  -.  (/) 
e.  y )
25 snmg 3701 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  E. w  w  e.  { B } )
26 r19.3rmv 3505 . . . . . . . . . . . 12  |-  ( E. w  w  e.  { B }  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2824, 27bitr4id 198 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  -.  (/)  e.  y ) )
2928biimpd 143 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  ->  -.  (/) 
e.  y ) )
30 snidg 3612 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3130adantr 274 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { B } )
32 simpr 109 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  { z  e.  { B }  |  (/)  e.  y }  =  { B }
)
3331, 32eleqtrrd 2250 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { z  e.  { B }  |  (/)  e.  y } )
34 biidd 171 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( (/) 
e.  y  <->  (/)  e.  y ) )
3534elrab 2886 . . . . . . . . . . . 12  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  <->  ( B  e.  { B }  /\  (/) 
e.  y ) )
3635simprbi 273 . . . . . . . . . . 11  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  ->  (/)  e.  y )
3733, 36syl 14 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  (/)  e.  y )
3837ex 114 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  { B }  ->  (/)  e.  y ) )
3929, 38orim12d 781 . . . . . . . 8  |-  ( B  e.  V  ->  (
( { z  e. 
{ B }  |  (/) 
e.  y }  =  (/) 
\/  { z  e. 
{ B }  |  (/) 
e.  y }  =  { B } )  -> 
( -.  (/)  e.  y  \/  (/)  e.  y ) ) )
4023, 39syld 45 . . . . . . 7  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( -.  (/) 
e.  y  \/  (/)  e.  y ) ) )
41 orcom 723 . . . . . . 7  |-  ( ( -.  (/)  e.  y  \/  (/)  e.  y )  <->  ( (/)  e.  y  \/  -.  (/)  e.  y ) )
4240, 41syl6ib 160 . . . . . 6  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( (/)  e.  y  \/  -.  (/)  e.  y ) ) )
43 df-dc 830 . . . . . 6  |-  (DECID  (/)  e.  y  <-> 
( (/)  e.  y  \/ 
-.  (/)  e.  y ) )
4442, 43syl6ibr 161 . . . . 5  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> DECID  (/)  e.  y ) )
4544a1dd 48 . . . 4  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( y  C_ 
{ (/) }  -> DECID  (/)  e.  y ) ) )
4645alrimdv 1869 . . 3  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) ) )
47 df-exmid 4181 . . 3  |-  (EXMID  <->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) )
4846, 47syl6ibr 161 . 2  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> EXMID ) )
4912, 48impbid 128 1  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   (/)c0 3414   {csn 3583  EXMIDwem 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-exmid 4181
This theorem is referenced by:  exmidunben  12381
  Copyright terms: Public domain W3C validator