| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidsssnc | Unicode version | ||
| Description: Excluded middle in terms
of subsets of a singleton. This is similar to
exmid01 4242 but lets you choose any set as the element of
the singleton
rather than just |
| Ref | Expression |
|---|---|
| exmidsssnc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidsssn 4246 |
. . . 4
| |
| 2 | sneq 3644 |
. . . . . . . 8
| |
| 3 | 2 | sseq2d 3223 |
. . . . . . 7
|
| 4 | 2 | eqeq2d 2217 |
. . . . . . . 8
|
| 5 | 4 | orbi2d 792 |
. . . . . . 7
|
| 6 | 3, 5 | bibi12d 235 |
. . . . . 6
|
| 7 | 6 | spcgv 2860 |
. . . . 5
|
| 8 | 7 | alimdv 1902 |
. . . 4
|
| 9 | 1, 8 | biimtrid 152 |
. . 3
|
| 10 | biimp 118 |
. . . 4
| |
| 11 | 10 | alimi 1478 |
. . 3
|
| 12 | 9, 11 | syl6 33 |
. 2
|
| 13 | ssrab2 3278 |
. . . . . . . . 9
| |
| 14 | snexg 4228 |
. . . . . . . . . 10
| |
| 15 | rabexg 4187 |
. . . . . . . . . 10
| |
| 16 | sseq1 3216 |
. . . . . . . . . . . 12
| |
| 17 | eqeq1 2212 |
. . . . . . . . . . . . 13
| |
| 18 | eqeq1 2212 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 18 | orbi12d 795 |
. . . . . . . . . . . 12
|
| 20 | 16, 19 | imbi12d 234 |
. . . . . . . . . . 11
|
| 21 | 20 | spcgv 2860 |
. . . . . . . . . 10
|
| 22 | 14, 15, 21 | 3syl 17 |
. . . . . . . . 9
|
| 23 | 13, 22 | mpii 44 |
. . . . . . . 8
|
| 24 | rabeq0 3490 |
. . . . . . . . . . 11
| |
| 25 | snmg 3751 |
. . . . . . . . . . . 12
| |
| 26 | r19.3rmv 3551 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | bitr4id 199 |
. . . . . . . . . 10
|
| 29 | 28 | biimpd 144 |
. . . . . . . . 9
|
| 30 | snidg 3662 |
. . . . . . . . . . . . 13
| |
| 31 | 30 | adantr 276 |
. . . . . . . . . . . 12
|
| 32 | simpr 110 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | eleqtrrd 2285 |
. . . . . . . . . . 11
|
| 34 | biidd 172 |
. . . . . . . . . . . . 13
| |
| 35 | 34 | elrab 2929 |
. . . . . . . . . . . 12
|
| 36 | 35 | simprbi 275 |
. . . . . . . . . . 11
|
| 37 | 33, 36 | syl 14 |
. . . . . . . . . 10
|
| 38 | 37 | ex 115 |
. . . . . . . . 9
|
| 39 | 29, 38 | orim12d 788 |
. . . . . . . 8
|
| 40 | 23, 39 | syld 45 |
. . . . . . 7
|
| 41 | orcom 730 |
. . . . . . 7
| |
| 42 | 40, 41 | imbitrdi 161 |
. . . . . 6
|
| 43 | df-dc 837 |
. . . . . 6
| |
| 44 | 42, 43 | imbitrrdi 162 |
. . . . 5
|
| 45 | 44 | a1dd 48 |
. . . 4
|
| 46 | 45 | alrimdv 1899 |
. . 3
|
| 47 | df-exmid 4239 |
. . 3
| |
| 48 | 46, 47 | imbitrrdi 162 |
. 2
|
| 49 | 12, 48 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rab 2493 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-exmid 4239 |
| This theorem is referenced by: exmidunben 12797 |
| Copyright terms: Public domain | W3C validator |