ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssnc Unicode version

Theorem exmidsssnc 4159
Description: Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4154 but lets you choose any set as the element of the singleton rather than just  (/). It is similar to exmidsssn 4158 but for a particular set  B rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidsssnc  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Distinct variable groups:    x, B    x, V

Proof of Theorem exmidsssnc
Dummy variables  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidsssn 4158 . . . 4  |-  (EXMID  <->  A. x A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) ) )
2 sneq 3567 . . . . . . . 8  |-  ( u  =  B  ->  { u }  =  { B } )
32sseq2d 3154 . . . . . . 7  |-  ( u  =  B  ->  (
x  C_  { u } 
<->  x  C_  { B } ) )
42eqeq2d 2166 . . . . . . . 8  |-  ( u  =  B  ->  (
x  =  { u } 
<->  x  =  { B } ) )
54orbi2d 780 . . . . . . 7  |-  ( u  =  B  ->  (
( x  =  (/)  \/  x  =  { u } )  <->  ( x  =  (/)  \/  x  =  { B } ) ) )
63, 5bibi12d 234 . . . . . 6  |-  ( u  =  B  ->  (
( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  <->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
76spcgv 2796 . . . . 5  |-  ( B  e.  V  ->  ( A. u ( x  C_  { u }  <->  ( x  =  (/)  \/  x  =  { u } ) )  ->  ( x  C_ 
{ B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
87alimdv 1856 . . . 4  |-  ( B  e.  V  ->  ( A. x A. u ( x  C_  { u } 
<->  ( x  =  (/)  \/  x  =  { u } ) )  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
91, 8syl5bi 151 . . 3  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
10 biimp 117 . . . 4  |-  ( ( x  C_  { B } 
<->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
1110alimi 1432 . . 3  |-  ( A. x ( x  C_  { B }  <->  ( x  =  (/)  \/  x  =  { B } ) )  ->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) )
129, 11syl6 33 . 2  |-  ( B  e.  V  ->  (EXMID  ->  A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) ) ) )
13 ssrab2 3209 . . . . . . . . 9  |-  { z  e.  { B }  |  (/)  e.  y } 
C_  { B }
14 snexg 4140 . . . . . . . . . 10  |-  ( B  e.  V  ->  { B }  e.  _V )
15 rabexg 4103 . . . . . . . . . 10  |-  ( { B }  e.  _V  ->  { z  e.  { B }  |  (/)  e.  y }  e.  _V )
16 sseq1 3147 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  C_  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  C_  { B } ) )
17 eqeq1 2161 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  (/)  <->  { z  e.  { B }  |  (/) 
e.  y }  =  (/) ) )
18 eqeq1 2161 . . . . . . . . . . . . 13  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( x  =  { B } 
<->  { z  e.  { B }  |  (/)  e.  y }  =  { B } ) )
1917, 18orbi12d 783 . . . . . . . . . . . 12  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  =  (/)  \/  x  =  { B } )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
2016, 19imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  { z  e. 
{ B }  |  (/) 
e.  y }  ->  ( ( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  <->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2120spcgv 2796 . . . . . . . . . 10  |-  ( { z  e.  { B }  |  (/)  e.  y }  e.  _V  ->  ( A. x ( x 
C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) )  -> 
( { z  e. 
{ B }  |  (/) 
e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) ) )
2214, 15, 213syl 17 . . . . . . . . 9  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  C_  { B }  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  { z  e.  { B }  |  (/)  e.  y }  =  { B }
) ) ) )
2313, 22mpii 44 . . . . . . . 8  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( {
z  e.  { B }  |  (/)  e.  y }  =  (/)  \/  {
z  e.  { B }  |  (/)  e.  y }  =  { B } ) ) )
24 rabeq0 3419 . . . . . . . . . . 11  |-  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  A. z  e.  { B }  -.  (/) 
e.  y )
25 snmg 3673 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  E. w  w  e.  { B } )
26 r19.3rmv 3480 . . . . . . . . . . . 12  |-  ( E. w  w  e.  { B }  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( -.  (/)  e.  y  <->  A. z  e.  { B }  -.  (/) 
e.  y ) )
2824, 27bitr4id 198 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  <->  -.  (/)  e.  y ) )
2928biimpd 143 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  (/)  ->  -.  (/) 
e.  y ) )
30 snidg 3585 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3130adantr 274 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { B } )
32 simpr 109 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  { z  e.  { B }  |  (/)  e.  y }  =  { B }
)
3331, 32eleqtrrd 2234 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  B  e.  { z  e.  { B }  |  (/)  e.  y } )
34 biidd 171 . . . . . . . . . . . . 13  |-  ( z  =  B  ->  ( (/) 
e.  y  <->  (/)  e.  y ) )
3534elrab 2864 . . . . . . . . . . . 12  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  <->  ( B  e.  { B }  /\  (/) 
e.  y ) )
3635simprbi 273 . . . . . . . . . . 11  |-  ( B  e.  { z  e. 
{ B }  |  (/) 
e.  y }  ->  (/)  e.  y )
3733, 36syl 14 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  { z  e.  { B }  |  (/)  e.  y }  =  { B } )  ->  (/)  e.  y )
3837ex 114 . . . . . . . . 9  |-  ( B  e.  V  ->  ( { z  e.  { B }  |  (/)  e.  y }  =  { B }  ->  (/)  e.  y ) )
3929, 38orim12d 776 . . . . . . . 8  |-  ( B  e.  V  ->  (
( { z  e. 
{ B }  |  (/) 
e.  y }  =  (/) 
\/  { z  e. 
{ B }  |  (/) 
e.  y }  =  { B } )  -> 
( -.  (/)  e.  y  \/  (/)  e.  y ) ) )
4023, 39syld 45 . . . . . . 7  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( -.  (/) 
e.  y  \/  (/)  e.  y ) ) )
41 orcom 718 . . . . . . 7  |-  ( ( -.  (/)  e.  y  \/  (/)  e.  y )  <->  ( (/)  e.  y  \/  -.  (/)  e.  y ) )
4240, 41syl6ib 160 . . . . . 6  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( (/)  e.  y  \/  -.  (/)  e.  y ) ) )
43 df-dc 821 . . . . . 6  |-  (DECID  (/)  e.  y  <-> 
( (/)  e.  y  \/ 
-.  (/)  e.  y ) )
4442, 43syl6ibr 161 . . . . 5  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> DECID  (/)  e.  y ) )
4544a1dd 48 . . . 4  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  ( y  C_ 
{ (/) }  -> DECID  (/)  e.  y ) ) )
4645alrimdv 1853 . . 3  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  ->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) ) )
47 df-exmid 4151 . . 3  |-  (EXMID  <->  A. y
( y  C_  { (/) }  -> DECID  (/) 
e.  y ) )
4846, 47syl6ibr 161 . 2  |-  ( B  e.  V  ->  ( A. x ( x  C_  { B }  ->  (
x  =  (/)  \/  x  =  { B } ) )  -> EXMID ) )
4912, 48impbid 128 1  |-  ( B  e.  V  ->  (EXMID  <->  A. x
( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 2125   A.wral 2432   {crab 2436   _Vcvv 2709    C_ wss 3098   (/)c0 3390   {csn 3556  EXMIDwem 4150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-nul 4086  ax-pow 4130
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rab 2441  df-v 2711  df-dif 3100  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-exmid 4151
This theorem is referenced by:  exmidunben  12114
  Copyright terms: Public domain W3C validator