Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidsssnc | Unicode version |
Description: Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4154 but lets you choose any set as the element of the singleton rather than just . It is similar to exmidsssn 4158 but for a particular set rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.) |
Ref | Expression |
---|---|
exmidsssnc | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidsssn 4158 | . . . 4 EXMID | |
2 | sneq 3567 | . . . . . . . 8 | |
3 | 2 | sseq2d 3154 | . . . . . . 7 |
4 | 2 | eqeq2d 2166 | . . . . . . . 8 |
5 | 4 | orbi2d 780 | . . . . . . 7 |
6 | 3, 5 | bibi12d 234 | . . . . . 6 |
7 | 6 | spcgv 2796 | . . . . 5 |
8 | 7 | alimdv 1856 | . . . 4 |
9 | 1, 8 | syl5bi 151 | . . 3 EXMID |
10 | biimp 117 | . . . 4 | |
11 | 10 | alimi 1432 | . . 3 |
12 | 9, 11 | syl6 33 | . 2 EXMID |
13 | ssrab2 3209 | . . . . . . . . 9 | |
14 | snexg 4140 | . . . . . . . . . 10 | |
15 | rabexg 4103 | . . . . . . . . . 10 | |
16 | sseq1 3147 | . . . . . . . . . . . 12 | |
17 | eqeq1 2161 | . . . . . . . . . . . . 13 | |
18 | eqeq1 2161 | . . . . . . . . . . . . 13 | |
19 | 17, 18 | orbi12d 783 | . . . . . . . . . . . 12 |
20 | 16, 19 | imbi12d 233 | . . . . . . . . . . 11 |
21 | 20 | spcgv 2796 | . . . . . . . . . 10 |
22 | 14, 15, 21 | 3syl 17 | . . . . . . . . 9 |
23 | 13, 22 | mpii 44 | . . . . . . . 8 |
24 | rabeq0 3419 | . . . . . . . . . . 11 | |
25 | snmg 3673 | . . . . . . . . . . . 12 | |
26 | r19.3rmv 3480 | . . . . . . . . . . . 12 | |
27 | 25, 26 | syl 14 | . . . . . . . . . . 11 |
28 | 24, 27 | bitr4id 198 | . . . . . . . . . 10 |
29 | 28 | biimpd 143 | . . . . . . . . 9 |
30 | snidg 3585 | . . . . . . . . . . . . 13 | |
31 | 30 | adantr 274 | . . . . . . . . . . . 12 |
32 | simpr 109 | . . . . . . . . . . . 12 | |
33 | 31, 32 | eleqtrrd 2234 | . . . . . . . . . . 11 |
34 | biidd 171 | . . . . . . . . . . . . 13 | |
35 | 34 | elrab 2864 | . . . . . . . . . . . 12 |
36 | 35 | simprbi 273 | . . . . . . . . . . 11 |
37 | 33, 36 | syl 14 | . . . . . . . . . 10 |
38 | 37 | ex 114 | . . . . . . . . 9 |
39 | 29, 38 | orim12d 776 | . . . . . . . 8 |
40 | 23, 39 | syld 45 | . . . . . . 7 |
41 | orcom 718 | . . . . . . 7 | |
42 | 40, 41 | syl6ib 160 | . . . . . 6 |
43 | df-dc 821 | . . . . . 6 DECID | |
44 | 42, 43 | syl6ibr 161 | . . . . 5 DECID |
45 | 44 | a1dd 48 | . . . 4 DECID |
46 | 45 | alrimdv 1853 | . . 3 DECID |
47 | df-exmid 4151 | . . 3 EXMID DECID | |
48 | 46, 47 | syl6ibr 161 | . 2 EXMID |
49 | 12, 48 | impbid 128 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wal 1330 wceq 1332 wex 1469 wcel 2125 wral 2432 crab 2436 cvv 2709 wss 3098 c0 3390 csn 3556 EXMIDwem 4150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rab 2441 df-v 2711 df-dif 3100 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-exmid 4151 |
This theorem is referenced by: exmidunben 12114 |
Copyright terms: Public domain | W3C validator |