ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2s Unicode version

Theorem findcard2s 6969
Description: Variation of findcard2 6968 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypotheses
Ref Expression
findcard2s.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard2s.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
findcard2s.3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
findcard2s.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard2s.5  |-  ps
findcard2s.6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
findcard2s  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, A, y, z    ch, x    ph, y, z    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y,
z)    ch( y, z)    th( y,
z)    ta( y, z)

Proof of Theorem findcard2s
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2s.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 6838 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 4047 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 231 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1846 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 4047 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 231 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1846 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 4047 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 231 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1846 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 6872 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard2s.5 . . . . . . . . 9  |-  ps
14 findcard2s.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 168 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 121 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1471 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 peano3 4642 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  suc  v  =/=  (/) )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  =/=  (/) )
20 breq1 4046 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( w 
~~  suc  v  <->  (/)  ~~  suc  v ) )
2120anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  <-> 
( v  e.  om  /\  (/)  ~~  suc  v ) ) )
22 peano1 4640 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  om
23 peano2 4641 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
24 nneneq 6936 . . . . . . . . . . . . . . . . . 18  |-  ( (
(/)  e.  om  /\  suc  v  e.  om )  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2522, 23, 24sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2625biimpa 296 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  (/)  =  suc  v )
2726eqcomd 2210 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  suc  v  =  (/) )
2821, 27biimtrdi 163 . . . . . . . . . . . . . 14  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  =  (/) ) )
2928com12 30 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =  (/)  ->  suc  v  =  (/) ) )
3029necon3d 2419 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( suc  v  =/=  (/)  ->  w  =/=  (/) ) )
3119, 30mpd 13 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  w  =/=  (/) )
3231ex 115 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  ->  w  =/=  (/) ) )
33 nnfi 6951 . . . . . . . . . . . . . . . 16  |-  ( suc  v  e.  om  ->  suc  v  e.  Fin )
3423, 33syl 14 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  suc  v  e.  Fin )
3534adantr 276 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  e.  Fin )
36 enfi 6952 . . . . . . . . . . . . . . 15  |-  ( w 
~~  suc  v  ->  ( w  e.  Fin  <->  suc  v  e. 
Fin ) )
3736adantl 277 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  e. 
Fin 
<->  suc  v  e.  Fin ) )
3835, 37mpbird 167 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  w  e.  Fin )
39 fin0 6964 . . . . . . . . . . . . 13  |-  ( w  e.  Fin  ->  (
w  =/=  (/)  <->  E. z 
z  e.  w ) )
4038, 39syl 14 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =/=  (/) 
<->  E. z  z  e.  w ) )
41 simpll 527 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  v  e.  om )
42 dif1en 6958 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  w  ~~  suc  v  /\  z  e.  w )  ->  ( w  \  {
z } )  ~~  v )
43423expa 1205 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
w  \  { z } )  ~~  v
)
44 fidifsnid 6950 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  Fin  /\  z  e.  w )  ->  ( ( w  \  { z } )  u.  { z } )  =  w )
4538, 44sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
( w  \  {
z } )  u. 
{ z } )  =  w )
46 neldifsn 3762 . . . . . . . . . . . . . . . . . 18  |-  -.  z  e.  ( w  \  {
z } )
47 vex 2774 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
_V
48 difexg 4184 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  _V  ->  (
w  \  { z } )  e.  _V )
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( w 
\  { z } )  e.  _V
50 breq1 4046 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( w  \  { z } )  ->  ( y  ~~  v 
<->  ( w  \  {
z } )  ~~  v ) )
5150anbi2d 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( ( v  e.  om  /\  y  ~~  v )  <->  ( v  e.  om  /\  ( w 
\  { z } )  ~~  v ) ) )
52 eleq2 2268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( w  \  { z } )  ->  ( z  e.  y  <->  z  e.  ( w  \  { z } ) ) )
5352notbid 668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( -.  z  e.  y  <->  -.  z  e.  ( w  \  { z } ) ) )
5451, 53anbi12d 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( w  \  { z } )  ->  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y
)  <->  ( ( v  e.  om  /\  (
w  \  { z } )  ~~  v
)  /\  -.  z  e.  ( w  \  {
z } ) ) ) )
55 uneq1 3319 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( w  \  { z } )  ->  ( y  u. 
{ z } )  =  ( ( w 
\  { z } )  u.  { z } ) )
5655sbceq1d 3002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( [. (
y  u.  { z } )  /  x ]. ph  <->  [. ( ( w 
\  { z } )  u.  { z } )  /  x ]. ph ) )
5756imbi2d 230 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( w  \  { z } )  ->  ( ( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph )  <->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) )
5854, 57imbi12d 234 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( w  \  { z } )  ->  ( ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )  <->  ( (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  /\  -.  z  e.  ( w  \  { z } ) )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) ) )
59 breq1 4046 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  (
x  ~~  v  <->  y  ~~  v ) )
60 findcard2s.2 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
6159, 60imbi12d 234 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  (
( x  ~~  v  ->  ph )  <->  ( y  ~~  v  ->  ch )
) )
6261spv 1882 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  v  ->  ch ) )
63 pm2.27 40 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y 
~~  v  ->  (
( y  ~~  v  ->  ch )  ->  ch ) )
6463adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( ( y  ~~  v  ->  ch )  ->  ch ) )
6564adantr 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  (
( y  ~~  v  ->  ch )  ->  ch ) )
66 rspe 2554 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( v  e.  om  /\  y  ~~  v )  ->  E. v  e.  om  y  ~~  v )
67 isfi 6838 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  Fin  <->  E. v  e.  om  y  ~~  v
)
6866, 67sylibr 134 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
y  e.  Fin )
69 findcard2s.6 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ch  ->  th ) )
7068, 69sylan 283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  ( ch  ->  th ) )
7165, 70syld 45 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  (
( y  ~~  v  ->  ch )  ->  th )
)
7262, 71syl5 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  th )
)
73 vex 2774 . . . . . . . . . . . . . . . . . . . . . 22  |-  y  e. 
_V
74 vex 2774 . . . . . . . . . . . . . . . . . . . . . . 23  |-  z  e. 
_V
7574snex 4228 . . . . . . . . . . . . . . . . . . . . . 22  |-  { z }  e.  _V
7673, 75unex 4486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  u.  { z } )  e.  _V
77 findcard2s.3 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
7876, 77sbcie 3032 . . . . . . . . . . . . . . . . . . . 20  |-  ( [. ( y  u.  {
z } )  /  x ]. ph  <->  th )
7972, 78imbitrrdi 162 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  e.  om  /\  y  ~~  v )  /\  -.  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )
8049, 58, 79vtocl 2826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  /\  -.  z  e.  ( w  \  { z } ) )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
)
8146, 80mpan2 425 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  om  /\  ( w  \  { z } )  ~~  v
)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
)
82 dfsbcq 2999 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  ( [. ( ( w  \  { z } )  u.  { z } )  /  x ]. ph  <->  [. w  /  x ]. ph ) )
8382imbi2d 230 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )  <->  ( A. x ( x 
~~  v  ->  ph )  ->  [. w  /  x ]. ph ) ) )
8481, 83imbitrid 154 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8545, 84syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8641, 43, 85mp2and 433 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
)
8786ex 115 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( z  e.  w  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8887exlimdv 1841 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( E. z 
z  e.  w  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8940, 88sylbid 150 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =/=  (/)  ->  ( A. x
( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
9089ex 115 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( w  =/=  (/)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
9132, 90mpdd 41 . . . . . . . . 9  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
9291com23 78 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
9392alrimdv 1898 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. w
( w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
94 nfv 1550 . . . . . . . 8  |-  F/ w
( x  ~~  suc  v  ->  ph )
95 nfv 1550 . . . . . . . . 9  |-  F/ x  w  ~~  suc  v
96 nfsbc1v 3016 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
9795, 96nfim 1594 . . . . . . . 8  |-  F/ x
( w  ~~  suc  v  ->  [. w  /  x ]. ph )
98 breq1 4046 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  ~~  suc  v  <->  w  ~~  suc  v ) )
99 sbceq1a 3007 . . . . . . . . 9  |-  ( x  =  w  ->  ( ph 
<-> 
[. w  /  x ]. ph ) )
10098, 99imbi12d 234 . . . . . . . 8  |-  ( x  =  w  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
) )
10194, 97, 100cbval 1776 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. w ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
)
10293, 101imbitrrdi 162 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
1035, 8, 11, 17, 102finds1 4648 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
10410319.21bi 1580 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
105104rexlimiv 2616 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
1062, 105sylbi 121 . 2  |-  ( x  e.  Fin  ->  ph )
1071, 106vtoclga 2838 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370    = wceq 1372   E.wex 1514    e. wcel 2175    =/= wne 2375   E.wrex 2484   _Vcvv 2771   [.wsbc 2997    \ cdif 3162    u. cun 3163   (/)c0 3459   {csn 3632   class class class wbr 4043   suc csuc 4410   omcom 4636    ~~ cen 6815   Fincfn 6817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-er 6610  df-en 6818  df-fin 6820
This theorem is referenced by:  findcard2d  6970  findcard2sd  6971  diffifi  6973  ac6sfi  6977  fisseneq  7013  fsum2d  11665  modfsummod  11688  fsumabs  11695  fsumiun  11707  fprod2d  11853  dvmptfsum  15115
  Copyright terms: Public domain W3C validator