ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genprndu Unicode version

Theorem genprndu 7484
Description: The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genprndu.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genprndu.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
genprndu.upper  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
Assertion
Ref Expression
genprndu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
Distinct variable groups:    x, y, z, g, h, w, v, q, A    x, B, y, z, g, h, w, v, q    x, G, y, z, g, h, w, v, q    g, F, q    A, r, q, v, w, x, y, z    B, r, g, h   
h, F, r, v, w, x, y, z    G, r

Proof of Theorem genprndu
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . . 10  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . . . . 10  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpelvu 7475 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. a  e.  ( 2nd `  A ) E. b  e.  ( 2nd `  B ) r  =  ( a G b ) ) )
4 r2ex 2490 . . . . . . . . 9  |-  ( E. a  e.  ( 2nd `  A ) E. b  e.  ( 2nd `  B
) r  =  ( a G b )  <->  E. a E. b ( ( a  e.  ( 2nd `  A )  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )
53, 4bitrdi 195 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. a E. b ( ( a  e.  ( 2nd `  A )  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) ) )
65biimpa 294 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  r  e.  ( 2nd `  ( A F B ) ) )  ->  E. a E. b
( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )
76adantrl 475 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. a E. b
( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )
8 prop 7437 . . . . . . . . . . . . . . . 16  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
9 prnminu 7451 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  a  e.  ( 2nd `  A ) )  ->  E. c  e.  ( 2nd `  A ) c 
<Q  a )
108, 9sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  a  e.  ( 2nd `  A ) )  ->  E. c  e.  ( 2nd `  A ) c 
<Q  a )
11 prop 7437 . . . . . . . . . . . . . . . 16  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
12 prnminu 7451 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  b  e.  ( 2nd `  B ) )  ->  E. d  e.  ( 2nd `  B ) d 
<Q  b )
1311, 12sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  b  e.  ( 2nd `  B ) )  ->  E. d  e.  ( 2nd `  B ) d 
<Q  b )
1410, 13anim12i 336 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  a  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  b  e.  ( 2nd `  B ) ) )  ->  ( E. c  e.  ( 2nd `  A
) c  <Q  a  /\  E. d  e.  ( 2nd `  B ) d  <Q  b )
)
1514an4s 583 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( a  e.  ( 2nd `  A )  /\  b  e.  ( 2nd `  B ) ) )  ->  ( E. c  e.  ( 2nd `  A ) c 
<Q  a  /\  E. d  e.  ( 2nd `  B
) d  <Q  b
) )
16 reeanv 2639 . . . . . . . . . . . . 13  |-  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B
) ( c  <Q 
a  /\  d  <Q  b )  <->  ( E. c  e.  ( 2nd `  A
) c  <Q  a  /\  E. d  e.  ( 2nd `  B ) d  <Q  b )
)
1715, 16sylibr 133 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( a  e.  ( 2nd `  A )  /\  b  e.  ( 2nd `  B ) ) )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c  <Q 
a  /\  d  <Q  b ) )
18 genprndu.ord . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
19 genprndu.com . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
2018, 19genplt2i 7472 . . . . . . . . . . . . . 14  |-  ( ( c  <Q  a  /\  d  <Q  b )  -> 
( c G d )  <Q  ( a G b ) )
2120reximi 2567 . . . . . . . . . . . . 13  |-  ( E. d  e.  ( 2nd `  B ) ( c 
<Q  a  /\  d  <Q  b )  ->  E. d  e.  ( 2nd `  B
) ( c G d )  <Q  (
a G b ) )
2221reximi 2567 . . . . . . . . . . . 12  |-  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B
) ( c  <Q 
a  /\  d  <Q  b )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  (
a G b ) )
2317, 22syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( a  e.  ( 2nd `  A )  /\  b  e.  ( 2nd `  B ) ) )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  (
a G b ) )
2423adantrr 476 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )  ->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) ( c G d )  <Q 
( a G b ) )
25 breq2 3993 . . . . . . . . . . . . . 14  |-  ( r  =  ( a G b )  ->  (
( c G d )  <Q  r  <->  ( c G d )  <Q 
( a G b ) ) )
2625biimprd 157 . . . . . . . . . . . . 13  |-  ( r  =  ( a G b )  ->  (
( c G d )  <Q  ( a G b )  -> 
( c G d )  <Q  r )
)
2726reximdv 2571 . . . . . . . . . . . 12  |-  ( r  =  ( a G b )  ->  ( E. d  e.  ( 2nd `  B ) ( c G d ) 
<Q  ( a G b )  ->  E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r
) )
2827reximdv 2571 . . . . . . . . . . 11  |-  ( r  =  ( a G b )  ->  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) ( c G d )  <Q 
( a G b )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r
) )
2928ad2antll 488 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )  -> 
( E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  (
a G b )  ->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) ( c G d )  <Q  r )
)
3024, 29mpd 13 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) ) )  ->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) ( c G d )  <Q 
r )
3130ex 114 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r
) )
3231exlimdvv 1890 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. a E. b ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r
) )
3332adantr 274 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. a E. b ( ( a  e.  ( 2nd `  A
)  /\  b  e.  ( 2nd `  B ) )  /\  r  =  ( a G b ) )  ->  E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r
) )
347, 33mpd 13 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) ( c G d )  <Q  r )
351, 2genppreclu 7477 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) )  ->  ( c G d )  e.  ( 2nd `  ( A F B ) ) ) )
3635imp 123 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) ) )  ->  (
c G d )  e.  ( 2nd `  ( A F B ) ) )
37 elprnqu 7444 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  c  e.  ( 2nd `  A ) )  -> 
c  e.  Q. )
388, 37sylan 281 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  c  e.  ( 2nd `  A ) )  -> 
c  e.  Q. )
39 elprnqu 7444 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  d  e.  ( 2nd `  B ) )  -> 
d  e.  Q. )
4011, 39sylan 281 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  d  e.  ( 2nd `  B ) )  -> 
d  e.  Q. )
4138, 40anim12i 336 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  c  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  d  e.  ( 2nd `  B ) ) )  ->  ( c  e. 
Q.  /\  d  e.  Q. ) )
4241an4s 583 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) ) )  ->  (
c  e.  Q.  /\  d  e.  Q. )
)
432caovcl 6007 . . . . . . . . . 10  |-  ( ( c  e.  Q.  /\  d  e.  Q. )  ->  ( c G d )  e.  Q. )
4442, 43syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) ) )  ->  (
c G d )  e.  Q. )
45 breq1 3992 . . . . . . . . . . 11  |-  ( q  =  ( c G d )  ->  (
q  <Q  r  <->  ( c G d )  <Q 
r ) )
46 eleq1 2233 . . . . . . . . . . 11  |-  ( q  =  ( c G d )  ->  (
q  e.  ( 2nd `  ( A F B ) )  <->  ( c G d )  e.  ( 2nd `  ( A F B ) ) ) )
4745, 46anbi12d 470 . . . . . . . . . 10  |-  ( q  =  ( c G d )  ->  (
( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) )  <-> 
( ( c G d )  <Q  r  /\  ( c G d )  e.  ( 2nd `  ( A F B ) ) ) ) )
4847adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) )  /\  q  =  ( c G d ) )  ->  ( ( q 
<Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  ( ( c G d )  <Q 
r  /\  ( c G d )  e.  ( 2nd `  ( A F B ) ) ) ) )
4944, 48rspcedv 2838 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) ) )  ->  (
( ( c G d )  <Q  r  /\  ( c G d )  e.  ( 2nd `  ( A F B ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
5036, 49mpan2d 426 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) ) )  ->  (
( c G d )  <Q  r  ->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
5150rexlimdvva 2595 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
5251adantr 274 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. c  e.  ( 2nd `  A
) E. d  e.  ( 2nd `  B
) ( c G d )  <Q  r  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
5334, 52mpd 13 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  e.  Q.  /\  r  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
5453expr 373 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  ( A F B ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
55 genprndu.upper . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
561, 2, 55genpcuu 7482 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  ->  ( q  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
5756alrimdv 1869 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  ->  A. x ( q 
<Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
58 breq2 3993 . . . . . . . . . . 11  |-  ( x  =  r  ->  (
q  <Q  x  <->  q  <Q  r ) )
59 eleq1 2233 . . . . . . . . . . 11  |-  ( x  =  r  ->  (
x  e.  ( 2nd `  ( A F B ) )  <->  r  e.  ( 2nd `  ( A F B ) ) ) )
6058, 59imbi12d 233 . . . . . . . . . 10  |-  ( x  =  r  ->  (
( q  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) )  <->  ( q  <Q  r  ->  r  e.  ( 2nd `  ( A F B ) ) ) ) )
6160cbvalv 1910 . . . . . . . . 9  |-  ( A. x ( q  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) )  <->  A. r ( q 
<Q  r  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6257, 61syl6ib 160 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  ->  A. r ( q 
<Q  r  ->  r  e.  ( 2nd `  ( A F B ) ) ) ) )
63 sp 1504 . . . . . . . 8  |-  ( A. r ( q  <Q 
r  ->  r  e.  ( 2nd `  ( A F B ) ) )  ->  ( q  <Q  r  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6462, 63syl6 33 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  ->  ( q  <Q 
r  ->  r  e.  ( 2nd `  ( A F B ) ) ) ) )
6564impd 252 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 2nd `  ( A F B ) )  /\  q  <Q  r
)  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6665ancomsd 267 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  <Q 
r  /\  q  e.  ( 2nd `  ( A F B ) ) )  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6766ad2antrr 485 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  r  e.  Q. )  /\  q  e.  Q. )  ->  (
( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) )  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6867rexlimdva 2587 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  ( A F B ) ) )  ->  r  e.  ( 2nd `  ( A F B ) ) ) )
6954, 68impbid 128 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
7069ralrimiva 2543 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    <Q cltq 7247   P.cnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  addclpr  7499  mulclpr  7534
  Copyright terms: Public domain W3C validator