ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunisuci Unicode version

Theorem onunisuci 4432
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onunisuci  |-  U. suc  A  =  A

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21ontrci 4427 . 2  |-  Tr  A
31elexi 2749 . . 3  |-  A  e. 
_V
43unisuc 4413 . 2  |-  ( Tr  A  <->  U. suc  A  =  A )
52, 4mpbi 145 1  |-  U. suc  A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   U.cuni 3809   Tr wtr 4101   Oncon0 4363   suc csuc 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-uni 3810  df-tr 4102  df-iord 4366  df-on 4368  df-suc 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator