ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunisuci Unicode version

Theorem onunisuci 4417
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onunisuci  |-  U. suc  A  =  A

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21ontrci 4412 . 2  |-  Tr  A
31elexi 2742 . . 3  |-  A  e. 
_V
43unisuc 4398 . 2  |-  ( Tr  A  <->  U. suc  A  =  A )
52, 4mpbi 144 1  |-  U. suc  A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   U.cuni 3796   Tr wtr 4087   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator