ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunisuci Unicode version

Theorem onunisuci 4292
Description: An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onunisuci  |-  U. suc  A  =  A

Proof of Theorem onunisuci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21ontrci 4287 . 2  |-  Tr  A
31elexi 2653 . . 3  |-  A  e. 
_V
43unisuc 4273 . 2  |-  ( Tr  A  <->  U. suc  A  =  A )
52, 4mpbi 144 1  |-  U. suc  A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448   U.cuni 3683   Tr wtr 3966   Oncon0 4223   suc csuc 4225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-uni 3684  df-tr 3967  df-iord 4226  df-on 4228  df-suc 4231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator