ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex Unicode version

Theorem uniex 4472
Description: The Axiom of Union in class notation. This says that if 
A is a set i.e.  A  e.  _V (see isset 2769), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1  |-  A  e. 
_V
Assertion
Ref Expression
uniex  |-  U. A  e.  _V

Proof of Theorem uniex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2  |-  A  e. 
_V
2 unieq 3848 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
32eleq1d 2265 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
4 uniex2 4471 . . 3  |-  E. y 
y  =  U. x
54issetri 2772 . 2  |-  U. x  e.  _V
61, 3, 5vtocl 2818 1  |-  U. A  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3840
This theorem is referenced by:  vuniex  4473  uniexg  4474  unex  4476  uniuni  4486  iunpw  4515  fo1st  6215  fo2nd  6216  brtpos2  6309  tfrexlem  6392  ixpsnf1o  6795  xpcomco  6885  xpassen  6889  pnfnre  8068  pnfxr  8079
  Copyright terms: Public domain W3C validator