ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex Unicode version

Theorem uniex 4415
Description: The Axiom of Union in class notation. This says that if 
A is a set i.e.  A  e.  _V (see isset 2732), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1  |-  A  e. 
_V
Assertion
Ref Expression
uniex  |-  U. A  e.  _V

Proof of Theorem uniex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2  |-  A  e. 
_V
2 unieq 3798 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
32eleq1d 2235 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
4 uniex2 4414 . . 3  |-  E. y 
y  =  U. x
54issetri 2735 . 2  |-  U. x  e.  _V
61, 3, 5vtocl 2780 1  |-  U. A  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-uni 3790
This theorem is referenced by:  vuniex  4416  uniexg  4417  unex  4419  uniuni  4429  iunpw  4458  fo1st  6125  fo2nd  6126  brtpos2  6219  tfrexlem  6302  ixpsnf1o  6702  xpcomco  6792  xpassen  6796  pnfnre  7940  pnfxr  7951
  Copyright terms: Public domain W3C validator