![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniex | Unicode version |
Description: The Axiom of Union in
class notation. This says that if ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | unieq 3820 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq1d 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | uniex2 4438 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | issetri 2748 |
. 2
![]() ![]() ![]() ![]() ![]() |
6 | 1, 3, 5 | vtocl 2793 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-uni 3812 |
This theorem is referenced by: vuniex 4440 uniexg 4441 unex 4443 uniuni 4453 iunpw 4482 fo1st 6160 fo2nd 6161 brtpos2 6254 tfrexlem 6337 ixpsnf1o 6738 xpcomco 6828 xpassen 6832 pnfnre 8001 pnfxr 8012 |
Copyright terms: Public domain | W3C validator |