ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex Unicode version

Theorem uniex 4468
Description: The Axiom of Union in class notation. This says that if 
A is a set i.e.  A  e.  _V (see isset 2766), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1  |-  A  e. 
_V
Assertion
Ref Expression
uniex  |-  U. A  e.  _V

Proof of Theorem uniex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2  |-  A  e. 
_V
2 unieq 3844 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
32eleq1d 2262 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
4 uniex2 4467 . . 3  |-  E. y 
y  =  U. x
54issetri 2769 . 2  |-  U. x  e.  _V
61, 3, 5vtocl 2814 1  |-  U. A  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-uni 3836
This theorem is referenced by:  vuniex  4469  uniexg  4470  unex  4472  uniuni  4482  iunpw  4511  fo1st  6210  fo2nd  6211  brtpos2  6304  tfrexlem  6387  ixpsnf1o  6790  xpcomco  6880  xpassen  6884  pnfnre  8061  pnfxr  8072
  Copyright terms: Public domain W3C validator