ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex Unicode version

Theorem uniex 4439
Description: The Axiom of Union in class notation. This says that if 
A is a set i.e.  A  e.  _V (see isset 2745), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1  |-  A  e. 
_V
Assertion
Ref Expression
uniex  |-  U. A  e.  _V

Proof of Theorem uniex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2  |-  A  e. 
_V
2 unieq 3820 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
32eleq1d 2246 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
4 uniex2 4438 . . 3  |-  E. y 
y  =  U. x
54issetri 2748 . 2  |-  U. x  e.  _V
61, 3, 5vtocl 2793 1  |-  U. A  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2739   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-uni 3812
This theorem is referenced by:  vuniex  4440  uniexg  4441  unex  4443  uniuni  4453  iunpw  4482  fo1st  6160  fo2nd  6161  brtpos2  6254  tfrexlem  6337  ixpsnf1o  6738  xpcomco  6828  xpassen  6832  pnfnre  8001  pnfxr  8012
  Copyright terms: Public domain W3C validator