ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex Unicode version

Theorem uniex 4528
Description: The Axiom of Union in class notation. This says that if 
A is a set i.e.  A  e.  _V (see isset 2806), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
Hypothesis
Ref Expression
uniex.1  |-  A  e. 
_V
Assertion
Ref Expression
uniex  |-  U. A  e.  _V

Proof of Theorem uniex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniex.1 . 2  |-  A  e. 
_V
2 unieq 3897 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
32eleq1d 2298 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
4 uniex2 4527 . . 3  |-  E. y 
y  =  U. x
54issetri 2809 . 2  |-  U. x  e.  _V
61, 3, 5vtocl 2855 1  |-  U. A  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-uni 3889
This theorem is referenced by:  vuniex  4529  uniexg  4530  unex  4532  uniuni  4542  iunpw  4571  fo1st  6303  fo2nd  6304  brtpos2  6397  tfrexlem  6480  ixpsnf1o  6883  xpcomco  6985  xpassen  6989  pnfnre  8188  pnfxr  8199  prdsvallem  13305  prdsval  13306
  Copyright terms: Public domain W3C validator