Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniex | Unicode version |
Description: The Axiom of Union in class notation. This says that if is a set i.e. (see isset 2736), then the union of is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 |
Ref | Expression |
---|---|
uniex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 | |
2 | unieq 3805 | . . 3 | |
3 | 2 | eleq1d 2239 | . 2 |
4 | uniex2 4421 | . . 3 | |
5 | 4 | issetri 2739 | . 2 |
6 | 1, 3, 5 | vtocl 2784 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 cvv 2730 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-uni 3797 |
This theorem is referenced by: vuniex 4423 uniexg 4424 unex 4426 uniuni 4436 iunpw 4465 fo1st 6136 fo2nd 6137 brtpos2 6230 tfrexlem 6313 ixpsnf1o 6714 xpcomco 6804 xpassen 6808 pnfnre 7961 pnfxr 7972 |
Copyright terms: Public domain | W3C validator |