![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > noel | Unicode version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3281 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifn 3282 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | pm2.65i 640 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-nul 3447 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | eleq2i 2260 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | mtbir 672 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-nul 3447 |
This theorem is referenced by: nel02 3451 n0i 3452 n0rf 3459 rex0 3464 eq0 3465 abvor0dc 3470 rab0 3475 un0 3480 in0 3481 0ss 3485 disj 3495 ral0 3548 int0 3884 iun0 3969 0iun 3970 br0 4077 exmid01 4227 nlim0 4425 nsuceq0g 4449 ordtriexmidlem 4551 ordtriexmidlem2 4552 ordtriexmid 4553 ontriexmidim 4554 ordtri2or2exmidlem 4558 onsucelsucexmidlem 4561 reg2exmidlema 4566 reg3exmidlemwe 4611 nn0eln0 4652 0xp 4739 dm0 4876 dm0rn0 4879 reldm0 4880 cnv0 5069 co02 5179 0fv 5590 acexmidlema 5909 acexmidlemb 5910 acexmidlemab 5912 mpo0 5988 nnsucelsuc 6544 nnsucuniel 6548 nnmordi 6569 nnaordex 6581 0er 6621 fidcenumlemrk 7013 nnnninfeq 7187 elni2 7374 nlt1pig 7401 0npr 7543 fzm1 10166 frec2uzltd 10474 0tonninf 10511 sum0 11531 fsumsplit 11550 sumsplitdc 11575 fsum2dlemstep 11577 prod0 11728 fprod2dlemstep 11765 ennnfonelem1 12564 0g0 12959 0ntop 14175 0met 14552 lgsdir2lem3 15146 if0ab 15297 bdcnul 15357 bj-nnelirr 15445 |
Copyright terms: Public domain | W3C validator |