| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | Unicode version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3295 |
. . 3
| |
| 2 | eldifn 3296 |
. . 3
| |
| 3 | 1, 2 | pm2.65i 640 |
. 2
|
| 4 | df-nul 3461 |
. . 3
| |
| 5 | 4 | eleq2i 2272 |
. 2
|
| 6 | 3, 5 | mtbir 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: nel02 3465 n0i 3466 n0rf 3473 rex0 3478 eq0 3479 abvor0dc 3484 rab0 3489 un0 3494 in0 3495 0ss 3499 disj 3509 ral0 3562 int0 3899 iun0 3984 0iun 3985 br0 4093 exmid01 4243 nlim0 4442 nsuceq0g 4466 ordtriexmidlem 4568 ordtriexmidlem2 4569 ordtriexmid 4570 ontriexmidim 4571 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 reg2exmidlema 4583 reg3exmidlemwe 4628 nn0eln0 4669 0xp 4756 dm0 4893 dm0rn0 4896 reldm0 4897 cnv0 5087 co02 5197 0fv 5614 acexmidlema 5937 acexmidlemb 5938 acexmidlemab 5940 mpo0 6017 nnsucelsuc 6579 nnsucuniel 6583 nnmordi 6604 nnaordex 6616 0er 6656 fidcenumlemrk 7058 nnnninfeq 7232 elni2 7429 nlt1pig 7456 0npr 7598 fzm1 10224 frec2uzltd 10550 0tonninf 10587 sum0 11732 fsumsplit 11751 sumsplitdc 11776 fsum2dlemstep 11778 prod0 11929 fprod2dlemstep 11966 ennnfonelem1 12811 0g0 13241 0ntop 14512 0met 14889 lgsdir2lem3 15540 if0ab 15778 bdcnul 15838 bj-nnelirr 15926 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |