| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | Unicode version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3286 |
. . 3
| |
| 2 | eldifn 3287 |
. . 3
| |
| 3 | 1, 2 | pm2.65i 640 |
. 2
|
| 4 | df-nul 3452 |
. . 3
| |
| 5 | 4 | eleq2i 2263 |
. 2
|
| 6 | 3, 5 | mtbir 672 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3452 |
| This theorem is referenced by: nel02 3456 n0i 3457 n0rf 3464 rex0 3469 eq0 3470 abvor0dc 3475 rab0 3480 un0 3485 in0 3486 0ss 3490 disj 3500 ral0 3553 int0 3889 iun0 3974 0iun 3975 br0 4082 exmid01 4232 nlim0 4430 nsuceq0g 4454 ordtriexmidlem 4556 ordtriexmidlem2 4557 ordtriexmid 4558 ontriexmidim 4559 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 reg2exmidlema 4571 reg3exmidlemwe 4616 nn0eln0 4657 0xp 4744 dm0 4881 dm0rn0 4884 reldm0 4885 cnv0 5074 co02 5184 0fv 5597 acexmidlema 5916 acexmidlemb 5917 acexmidlemab 5919 mpo0 5996 nnsucelsuc 6558 nnsucuniel 6562 nnmordi 6583 nnaordex 6595 0er 6635 fidcenumlemrk 7029 nnnninfeq 7203 elni2 7398 nlt1pig 7425 0npr 7567 fzm1 10192 frec2uzltd 10512 0tonninf 10549 sum0 11570 fsumsplit 11589 sumsplitdc 11614 fsum2dlemstep 11616 prod0 11767 fprod2dlemstep 11804 ennnfonelem1 12649 0g0 13078 0ntop 14327 0met 14704 lgsdir2lem3 15355 if0ab 15535 bdcnul 15595 bj-nnelirr 15683 |
| Copyright terms: Public domain | W3C validator |