| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | Unicode version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3303 |
. . 3
| |
| 2 | eldifn 3304 |
. . 3
| |
| 3 | 1, 2 | pm2.65i 640 |
. 2
|
| 4 | df-nul 3469 |
. . 3
| |
| 5 | 4 | eleq2i 2274 |
. 2
|
| 6 | 3, 5 | mtbir 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: nel02 3473 n0i 3474 n0rf 3481 rex0 3486 eq0 3487 abvor0dc 3492 rab0 3497 un0 3502 in0 3503 0ss 3507 disj 3517 ral0 3570 int0 3913 iun0 3998 0iun 3999 br0 4108 exmid01 4258 nlim0 4459 nsuceq0g 4483 ordtriexmidlem 4585 ordtriexmidlem2 4586 ordtriexmid 4587 ontriexmidim 4588 ordtri2or2exmidlem 4592 onsucelsucexmidlem 4595 reg2exmidlema 4600 reg3exmidlemwe 4645 nn0eln0 4686 0xp 4773 dm0 4911 dm0rn0 4914 reldm0 4915 cnv0 5105 co02 5215 0fv 5635 acexmidlema 5958 acexmidlemb 5959 acexmidlemab 5961 mpo0 6038 nnsucelsuc 6600 nnsucuniel 6604 nnmordi 6625 nnaordex 6637 0er 6677 fidcenumlemrk 7082 nnnninfeq 7256 iftrueb01 7369 pw1if 7371 elni2 7462 nlt1pig 7489 0npr 7631 fzm1 10257 frec2uzltd 10585 0tonninf 10622 sum0 11814 fsumsplit 11833 sumsplitdc 11858 fsum2dlemstep 11860 prod0 12011 fprod2dlemstep 12048 ennnfonelem1 12893 0g0 13323 0ntop 14594 0met 14971 lgsdir2lem3 15622 if0ab 15941 bdcnul 16000 bj-nnelirr 16088 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |