| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | Unicode version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 |
. . 3
| |
| 2 | eldifn 3327 |
. . 3
| |
| 3 | 1, 2 | pm2.65i 642 |
. 2
|
| 4 | df-nul 3492 |
. . 3
| |
| 5 | 4 | eleq2i 2296 |
. 2
|
| 6 | 3, 5 | mtbir 675 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: nel02 3496 n0i 3497 n0rf 3504 rex0 3509 eq0 3510 abvor0dc 3515 rab0 3520 un0 3525 in0 3526 0ss 3530 disj 3540 ral0 3593 int0 3937 iun0 4022 0iun 4023 br0 4132 exmid01 4282 nlim0 4485 nsuceq0g 4509 ordtriexmidlem 4611 ordtriexmidlem2 4612 ordtriexmid 4613 ontriexmidim 4614 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 reg2exmidlema 4626 reg3exmidlemwe 4671 nn0eln0 4712 0xp 4799 dm0 4937 dm0rn0 4940 reldm0 4941 cnv0 5132 co02 5242 0fv 5665 acexmidlema 5992 acexmidlemb 5993 acexmidlemab 5995 mpo0 6074 nnsucelsuc 6637 nnsucuniel 6641 nnmordi 6662 nnaordex 6674 0er 6714 fidcenumlemrk 7121 nnnninfeq 7295 iftrueb01 7408 pw1if 7410 elni2 7501 nlt1pig 7528 0npr 7670 fzm1 10296 frec2uzltd 10625 0tonninf 10662 sum0 11899 fsumsplit 11918 sumsplitdc 11943 fsum2dlemstep 11945 prod0 12096 fprod2dlemstep 12133 ennnfonelem1 12978 0g0 13409 0ntop 14681 0met 15058 lgsdir2lem3 15709 if0ab 16169 bdcnul 16228 bj-nnelirr 16316 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |