| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | Unicode version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3295 |
. . 3
| |
| 2 | eldifn 3296 |
. . 3
| |
| 3 | 1, 2 | pm2.65i 640 |
. 2
|
| 4 | df-nul 3461 |
. . 3
| |
| 5 | 4 | eleq2i 2272 |
. 2
|
| 6 | 3, 5 | mtbir 673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: nel02 3465 n0i 3466 n0rf 3473 rex0 3478 eq0 3479 abvor0dc 3484 rab0 3489 un0 3494 in0 3495 0ss 3499 disj 3509 ral0 3562 int0 3899 iun0 3984 0iun 3985 br0 4092 exmid01 4242 nlim0 4441 nsuceq0g 4465 ordtriexmidlem 4567 ordtriexmidlem2 4568 ordtriexmid 4569 ontriexmidim 4570 ordtri2or2exmidlem 4574 onsucelsucexmidlem 4577 reg2exmidlema 4582 reg3exmidlemwe 4627 nn0eln0 4668 0xp 4755 dm0 4892 dm0rn0 4895 reldm0 4896 cnv0 5086 co02 5196 0fv 5612 acexmidlema 5935 acexmidlemb 5936 acexmidlemab 5938 mpo0 6015 nnsucelsuc 6577 nnsucuniel 6581 nnmordi 6602 nnaordex 6614 0er 6654 fidcenumlemrk 7056 nnnninfeq 7230 elni2 7427 nlt1pig 7454 0npr 7596 fzm1 10222 frec2uzltd 10548 0tonninf 10585 sum0 11699 fsumsplit 11718 sumsplitdc 11743 fsum2dlemstep 11745 prod0 11896 fprod2dlemstep 11933 ennnfonelem1 12778 0g0 13208 0ntop 14479 0met 14856 lgsdir2lem3 15507 if0ab 15741 bdcnul 15801 bj-nnelirr 15889 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |